Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optimizing the p charge of S in p-block metal sulfides for sulfur reduction electrocatalysis

Abstract

Understanding sulfur conversion chemistry is key to the development of sulfur-based high-energy-density batteries. However, unclear relationships between the electronic structure of the catalyst and its activity are the major problem. Here, we provide a direct correlation between the p electron gain of S in p-block metal sulfides and the apparent activation energies (Ea) for the sulfur reduction reaction (SRR), in particular, Li2Sn to Li2S conversion, which is the rate-determining step of the SRR. The maximum p charge occurs in bismuth sulfide and results in the lowest Ea and a high SRR rate in the cathode. Li–S batteries with the Bi2S3 catalyst work steadily at a high rate of 5.0C with a high-capacity retention of ~85% after 500 cycles. A high areal capacity of ~21.9 mAh cm−2 was obtained under a high sulfur loading of 17.6 mg cm−2 but a low electrolyte/sulfur ratio of 7.5 μl mg−1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrocatalysis.
Fig. 2: Ex situ XPS spectra.
Fig. 3: Operando Raman measurements.
Fig. 4: Electronic properties of various p-MSs.
Fig. 5: Descriptor.
Fig. 6: Optimized electrochemical performance of Li–S batteries in the presence of a Bi2S3@rGO catalyst.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data are available from the authors on reasonable request.

References

  1. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    Article  CAS  Google Scholar 

  2. Pang, Q., Liang, X., Kwok, C. Y. & Nazar, L. F. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016).

    Article  CAS  Google Scholar 

  3. Zhao, C. et al. A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 16, 166–173 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Peng, L. et al. A fundamental look at electrocatalytic sulfur reduction reaction. Nat. Catal. 3, 762–770 (2020).

    Article  CAS  Google Scholar 

  5. Yuan, Z. et al. Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 16, 519–527 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, M. et al. Adsorption–catalysis design in the lithium–sulfur battery. Adv. Energy Mater. 10, 1903008 (2020).

    Article  CAS  Google Scholar 

  7. Sun, Z. et al. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium–sulfur batteries. Nat. Commun. 8, 14627 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Xia, J. et al. Boosting catalytic activity by seeding nanocatalysts onto interlayers to inhibit polysulfide shuttling in Li–S batteries. Adv. Funct. Mater. 31, 2101980 (2021).

    Article  CAS  Google Scholar 

  9. Hua, W. et al. Selective catalysis remedies polysulfide shuttling in lithium–sulfur batteries. Adv. Mater. 33, 2101006 (2021).

    Article  CAS  Google Scholar 

  10. Nadège, G., Tivadar, C., Pascal, R., Christophe, G. & Michel, V. Influence of H2S on the hydrogenation activity of relevant transition metal sulfides. Catal. Today 98, 61–66 (2004).

    Article  Google Scholar 

  11. Pecoraro, T. A. & Chianelli, R. R. Hydrodesulfurization catalysis by transition metal sulfides. J. Catal. 67, 430–445 (1981).

    Article  CAS  Google Scholar 

  12. Tan, A. & Harris, S. Electronic structure of Rh2S3 and RuS2, two very active hydrodesulfurization catalysts. Inorg. Chem. 37, 2215–2222 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Burdett, J. K. & Chung, J. T. Volcano plots, hydrodesulfurization and surface atom pair potentials. Surf. Sci. 236, L353–L357 (1990).

    Article  CAS  Google Scholar 

  14. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Suntivich, J. et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3, 546–550 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Lipsch, J. M. J. G. & Schuit, G. C. A. The CoO, MoO3, Al2O3 catalyst: III. Catalytic properties. J. Catal. 15, 179–189 (1969).

    Article  CAS  Google Scholar 

  17. Chianelli, R. R., Daage, M. & Ledoux, M. J. Fundamental studies of transition-metal sulfide catalytic materials. Adv. Catal. 40, 177–232 (1994).

    CAS  Google Scholar 

  18. Nørskov, J. K., Clausen, B. S. & Topsøe, H. Understanding the trends in the hydrodesulfurization activity of the transition metal sulfides. Catal. Lett. 13, 1–8 (1992).

    Article  Google Scholar 

  19. Dickens, C. F., Montoya, J. H., Kulkarni, A. R., Bajdich, M. & Nørskov, J. K. An electronic structure descriptor for oxygen reactivity at metal and metal–oxide surfaces. Surf. Sci. 681, 122–129 (2019).

    Article  CAS  Google Scholar 

  20. Tsai, C., Chan, K., Nørskov, J. K. & Abild-Pedersen, F. Understanding the reactivity of layered transition-metal sulfides: a single electronic descriptor for structure and adsorption. J. Phys. Chem. Lett. 5, 3884–3889 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Song, X. et al. Improving poisoning resistance of electrocatalysts via alloying strategy for high-performance lithium–sulfur batteries. Energy Storage Mater. 41, 248–254 (2021).

    Article  Google Scholar 

  22. Han, Z. et al. Engineering dp orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li–S batteries. Adv. Mater. 33, 2105947 (2021).

    Article  CAS  Google Scholar 

  23. Xiao, C. et al. p-Block tin single atom catalyst for improved electrochemistry in a lithium–sulfur battery: a theoretical and experimental study. J. Mater. Chem. A 10, 3667–3677 (2022).

    Article  CAS  Google Scholar 

  24. Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Mikhaylik, Y. V. & Akridge, J. R. Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 151, A1969 (2004).

    Article  CAS  Google Scholar 

  26. Bag, S., Gaudette, A. F., Bussell, M. E. & Kanatzidis, M. G. Spongy chalcogels of non-platinum metals act as effective hydrodesulfurization catalysts. Nat. Chem. 1, 217–224 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Moses, P. G. et al. Trends in hydrodesulfurization catalysis based on realistic surface models. Catal. Lett. 144, 1425–1432 (2014).

    Article  CAS  Google Scholar 

  28. Liang, X. et al. A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 6, 5682 (2015).

    Article  PubMed  Google Scholar 

  29. Holleman, A. F., Wiberg, E. & Wiberg, N. Holleman–Wiberg’s Inorganic Chemistry (Academic Press, 2001).

  30. Pang, Q., Kundu, D., Cuisinier, M. & Nazar, L. F. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium–sulphur batteries. Nat. Commun. 5, 4759 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, L. et al. In situ optical spectroscopy characterization for optimal design of lithium–sulfur batteries. Chem. Soc. Rev. 48, 5432–5453 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Lei, T. et al. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium–sulfur batteries. Joule 2, 2091–2104 (2018).

    Article  CAS  Google Scholar 

  33. Fleet, M. E. XANES spectroscopy of sulfur in Earth materials. Can. Mineralogist 43, 1811–1838 (2005).

    Article  CAS  Google Scholar 

  34. Li, D. et al. S K- and L-edge XANES and electronic structure of some copper sulfide minerals. Phys. Chem. Miner. 21, 317–324 (1994).

    Article  CAS  Google Scholar 

  35. Szilagyi, R. K. et al. Description of the ground state wave functions of Ni dithiolenes using sulfur K-edge X-ray absorption spectroscopy. J. Am. Chem. Soc. 125, 9158–9169 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Cuisinier, M. et al. Sulfur speciation in Li–S batteries determined by operando X-ray absorption spectroscopy. J. Phys. Chem. Lett. 4, 3227–3232 (2013).

    Article  CAS  Google Scholar 

  37. Anzures, B. A., Parman, S. W., Milliken, R. E., Lanzirotti, A. & Newville, M. XANES spectroscopy of sulfides stable under reducing conditions. Am. Mineral. 105, 375–381 (2020).

    Article  Google Scholar 

  38. Rogalev, A., Goulon, J. & Brouder, C. Sulphur K-edge X-ray absorption fine-structure studies of EuS and GdS. J. Phys. Condens. Matter 11, 1115–1121 (1999).

    Article  CAS  Google Scholar 

  39. Mohammed, L., Saeed, M. A., Zhang, Q. & Musa, A. Core-level excitation in polymorph of As2S3 and β-In2S3. J. Comput. Sci. 28, 11–17 (2018).

    Article  Google Scholar 

  40. Sainctavit, P., Petiau, J., Flank, A. M., Ringeissen, J. & Lewonczuk, S. XANES in chalcopyrites semiconductors: CuFeS2, CuGaS2, CuInSe2. Phys. B 158, 623–624 (1989).

    Article  CAS  Google Scholar 

  41. Ohno, Y., Hirama, K., Nakai, S., Sugiura, C. & Okada, S. X-ray absorption spectroscopy of layer transition-metal disulfides. Phys. Rev. B 27, 3811–3820 (1983).

    Article  CAS  Google Scholar 

  42. Cho, E.-J. et al. Unoccupied states and charge transfer in Cu–Pd alloys studied by bremsstrahlung isochromat spectroscopy, X-ray photoelectron spectroscopy, and LIII absorption spectroscopy. Phys. Rev. B 52, 16443–16450 (1995).

    Article  CAS  Google Scholar 

  43. Gelatt, C. D. & Ehrenreich, H. Charge transfer in alloys: AgAu. Phys. Rev. B 10, 398–415 (1974).

    Article  CAS  Google Scholar 

  44. Zhu, X. et al. Optimising surface d charge of AuPd nanoalloy catalysts for enhanced catalytic activity. Nat. Commun. 10, 1428 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sun, Y. et al. Gold catalysts containing interstitial carbon atoms boost hydrogenation activity. Nat. Commun. 11, 4600 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schmøkel, M. S. et al. Atomic properties and chemical bonding in the pyrite and marcasite polymorphs of FeS2: a combined experimental and theoretical electron density study. Chem. Sci. 5, 1408–1421 (2014).

    Article  Google Scholar 

  47. Moulder, J. F., Stickle, W. F., Sobol, P. E. & Bomben, K. D. Handbook of X-Ray Photoelectron Spectroscopy (ed. Chastain, J.) (Perkin-Elmer Corporation, 1992).

  48. Aray, Y., Rodriguez, J., Vega, D. & Rodriguez-Arias, E. N. Correlation of the topology of the electron density of pyrite-type transition metal sulfides with their catalytic activity in hydrodesulfurization. Angew. Chem. Int. Ed. 39, 3810–3813 (2000).

    Article  CAS  Google Scholar 

  49. Omann, L., Königs, C. D. F., Klare, H. F. T. & Oestreich, M. Cooperative catalysis at metal–sulfur bonds. Acc. Chem. Res. 50, 1258–1269 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Byskov, L. S., Nørskov, J. K., Clausen, B. S. & Topsøe, H. DFT calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts. J. Catal. 187, 109–122 (1999).

    Article  CAS  Google Scholar 

  51. Kaiser, D., Klose, I., Oost, R., Neuhaus, J. & Maulide, N. Bond-forming and -breaking reactions at sulfur (IV): sulfoxides, sulfonium salts, sulfur ylides, and sulfinate salts. Chem. Rev. 119, 8701–8780 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Goulas, K. A., Mironenko, A. V., Jenness, G. R., Mazal, T. & Vlachos, D. G. Fundamentals of C–O bond activation on metal oxide catalysts. Nat. Catal. 2, 269–276 (2019).

    Article  CAS  Google Scholar 

  53. Mowbray, D. J. et al. Trends in metal oxide stability for nanorods, nanotubes, and surfaces. J. Phys. Chem. C 115, 2244–2252 (2011).

    Article  CAS  Google Scholar 

  54. Queen, M. S. et al. Electronic structure of [Ni(ii)S4] complexes from S K-edge X-ray absorption spectroscopy. Coord. Chem. Rev. 257, 564–578 (2013).

    Article  CAS  Google Scholar 

  55. Rose, K. et al. Investigation of the electronic structure of 2Fe–2S model complexes and the Rieske protein using ligand K-edge X-ray absorption spectroscopy. J. Am. Chem. Soc. 121, 2353–2363 (1999).

    Article  CAS  Google Scholar 

  56. Zhao, X. et al. Unleash electron transfer in C–H functionalization by mesoporous carbon-supported palladium interstitial catalysts. Natl Sci. Rev. 8, nwaa126 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pan, A., Kar, T., Rakshit, A. K. & Moulik, S. P. Enthalpy–entropy compensation (EEC) effect: decisive role of free energy. J. Phys. Chem. B 120, 10531–10539 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. He, J. et al. Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li-S batteries. Energy Environ. Sci. 12, 344–350 (2019).

    Article  CAS  Google Scholar 

  59. Lv, W. et al. Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano 3, 3730–3736 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Chua, C. K. & Pumera, M. Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43, 291–312 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2022YFA1503502 and 2021YFF0500600), National Natural Science Foundation of China (22025204, 51932005, 92034301, 52102283 and 52022041) and Innovation Program of the Shanghai Municipal Education Commission (2021-01-07-00-02-E00119).

Author information

Authors and Affiliations

Authors

Contributions

Y.W. and W.L. designed the research, supervised the experiments and edited the paper. W.H., T.S., H.L. and Y.S. planned the synthesis, tested the catalysts, analysed the X-ray absorption spectra and electrochemical data and wrote the paper. H.L. contributed to the DFT calculations and discussion on the electronic properties of the selected catalysts. L.P. and Z. Han assisted with the electrochemical data and the in situ Raman measurements when the revised version was prepared. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Wei Lv or Ying Wan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Jie Xiong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–43, Tables 1–3 and methods.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, W., Shang, T., Li, H. et al. Optimizing the p charge of S in p-block metal sulfides for sulfur reduction electrocatalysis. Nat Catal 6, 174–184 (2023). https://doi.org/10.1038/s41929-023-00912-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-00912-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing