Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction

Abstract

Hydrogen production through water electrolysis is of considerable interest for converting the intermittent electricity generated by renewable energy sources into storable chemical energy, but the typical water electrolysis process requires a high working voltage (>1.23 V) and produces oxygen at the anode in addition to hydrogen at the cathode. Here we report a hydrogen production system that combines anodic and cathodic H2 production from low-potential aldehyde oxidation and the hydrogen evolution reaction, respectively, at a low voltage of ~0.1 V. Unlike conventional aldehyde electrooxidation, in which the hydrogen atom of the aldehyde group is oxidized into H2O at high potentials, the low-potential aldehyde oxidation enables the hydrogen atom to recombine into H2 gas. The assembled electrolyser requires an electricity input of only ~0.35 kWh per m3 of H2, in contrast to the ~5 kWh per m3 of H2 required for conventional water electrolysis. This study provides a promising avenue for the safe, efficient and scalable production of high-purity hydrogen.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Water electrolysis systems with various anode reactions.
Fig. 2: Anodic oxidation reaction of biomass-derived aldehydes.
Fig. 3: The bipolar hydrogen production system.
Fig. 4: Energy efficiency analysis of the bipolar hydrogen production system.

Data availability

The data that support the findings of this study are included in the published article and its Supplementary Information. All other data are available from the authors upon reasonable request. Source data are provided with this paper.

References

  1. Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    CAS  PubMed  Google Scholar 

  2. Lin, L. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 544, 80–83 (2017).

    CAS  PubMed  Google Scholar 

  3. Tian, X. L. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 366, 850–856 (2019).

    CAS  PubMed  Google Scholar 

  4. Gong, K. P., Du, F., Xia, Z. H., Durstock, M. & Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009).

    CAS  PubMed  Google Scholar 

  5. Nikolaidis, P. & Poullikkas, A. A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 67, 597–611 (2017).

    CAS  Google Scholar 

  6. Lin, F. et al. Electrocatalytic hydrogen evolution of ultrathin Co-Mo5N6 heterojunction with interfacial electron redistribution. Adv. Energy Mater. 10, 2002176 (2020).

    CAS  Google Scholar 

  7. Wu, L. et al. Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Adv. Funct. Mater. 31, 2006484 (2020).

    Google Scholar 

  8. Mahmood, J. et al. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 12, 441–446 (2017).

    CAS  PubMed  Google Scholar 

  9. Li, H. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48–53 (2016).

    CAS  PubMed  Google Scholar 

  10. Zhang, B. et al. High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nat. Catal. 3, 985–992 (2020).

    CAS  Google Scholar 

  11. Kuai, C. et al. Phase segregation reversibility in mixed-metal hydroxide water oxidation catalysts. Nat. Catal. 3, 743–753 (2020).

    CAS  Google Scholar 

  12. Oener, S. Z., Foster, M. J. & Boettcher, S. W. Accelerating water dissociation in bipolar membranes and for electrocatalysis. Science 369, 1099–1103 (2020).

    CAS  PubMed  Google Scholar 

  13. Rausch, B., Symes, M. D., Chisholm, G. & Cronin, L. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 345, 1326–1330 (2014).

    CAS  PubMed  Google Scholar 

  14. You, B., Han, G. Q. & Sun, Y. J. Electrocatalytic and photocatalytic hydrogen evolution integrated with organic oxidation. Chem. Commun. 54, 5943–5955 (2018).

    CAS  Google Scholar 

  15. Chen, L., Dong, X. L., Wang, Y. G. & Xia, Y. Y. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide. Nat. Commun. 7, 11741 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, G. F., Luo, Y. R., Ding, L. X. & Wang, H. H. Low-voltage electrolytic hydrogen production derived from efficient water and ethanol oxidation on fluorine-modified FeOOH anode. ACS Catal. 8, 526–530 (2018).

    CAS  Google Scholar 

  17. Chen, Y. X. et al. Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis. Nat. Commun. 5, 4036 (2014).

    CAS  PubMed  Google Scholar 

  18. You, B., Liu, X., Liu, X. & Sun, Y. Efficient H2 evolution coupled with oxidative refining of alcohols via a hierarchically porous nickel bifunctional electrocatalyst. ACS Catal. 7, 4564–4570 (2017).

    CAS  Google Scholar 

  19. Zheng, J. et al. Hierarchical porous NC@CuCo nitride nanosheet networks: highly efficient bifunctional electrocatalyst for overall water splitting and selective electrooxidation of benzyl alcohol. Adv. Funct. Mater. 27, 1704169 (2017).

    Google Scholar 

  20. Huang, H. et al. Ni, Co hydroxide triggers electrocatalytic production of high-purity benzoic acid over 400 mA cm−2. Energy Environ. Sci. 13, 4990–4999 (2020).

    CAS  Google Scholar 

  21. Chen, S., Duan, J. J., Vasileff, A. & Qiao, S. Z. Size fractionation of two-dimensional sub-nanometer thin manganese dioxide crystals towards superior urea electrocatalytic conversion. Angew. Chem. Int. Ed. 55, 3804–3808 (2016).

    CAS  Google Scholar 

  22. Liu, W. J. et al. Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis. Nat. Commun. 11, 265 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Du, P. Y., Zhang, J. J., Liu, Y. H. & Huang, M. H. Hydrogen generation from catalytic glucose oxidation by Fe-based electrocatalysts. Electrochem. Commun. 83, 11–15 (2017).

    CAS  Google Scholar 

  24. Jiang, N. et al. Electrocatalysis of furfural oxidation coupled with H2 evolution via nickel-based electrocatalysts in water. ChemNanoMat 3, 491–495 (2017).

    CAS  Google Scholar 

  25. Jiang, N., You, B., Boonstra, R., Rodriguez, I. M. T. & Sun, Y. J. Integrating electrocatalytic 5-hydroxymethylfurfural oxidation and hydrogen production via Co-P-derived electrocatalysts. ACS Energy Lett. 1, 386–390 (2016).

    CAS  Google Scholar 

  26. You, B., Jiang, N., Liu, X. & Sun, Y. J. Simultaneous H2 generation and biomass upgrading in water by an efficient noble-metal-free bifunctional electrocatalyst. Angew. Chem. Int. Ed. 55, 9913–9917 (2016).

    CAS  Google Scholar 

  27. You, B., Liu, X., Jiang, N. & Sun, Y. J. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 138, 13639–13646 (2016).

    CAS  PubMed  Google Scholar 

  28. Zhang, N. N. et al. Electrochemical oxidation of 5-hydroxymethylfurfural on nickel nitride/carbon nanosheets: reaction pathway determined by in situ sum frequency generation vibrational spectroscopy. Angew. Chem. Int. Ed. 58, 15895–15903 (2019).

    CAS  Google Scholar 

  29. Zhou, B. et al. Platinum modulates redox properties and 5-hydroxymethylfurfural adsorption kinetics of Ni(OH)2 for biomass upgrading. Angew. Chem. Int. Ed. 60, 22908–22914 (2021).

    CAS  Google Scholar 

  30. Lu, Y. et al. Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural. Angew. Chem. Int. Ed. 59, 19215–19221 (2020).

    CAS  Google Scholar 

  31. Lu, Y. et al. Tuning the selective adsorption site of biomass on Co3O4 by Ir single atoms for electrosynthesis. Adv. Mater. 33, 2007056 (2021).

    CAS  Google Scholar 

  32. Nam, D.-H., Taitt, B. J. & Choi, K.-S. Copper-based catalytic anodes to produce 2,5-furandicarboxylic acid, a biomass-derived alternative to terephthalic acid. ACS Catal. 8, 1197–1206 (2018).

    CAS  Google Scholar 

  33. Kapoor, S., Barnabas, F. A., Sauer, M. C., Meisel, D. & Jonah, C. D. Kinetics of hydrogen formation from formaldehyde in basic aqueous solutions. J. Phys. Chem. 99, 6857–6863 (1995).

    CAS  Google Scholar 

  34. Bi, Y. & Lu, G. Nano-Cu catalyze hydrogen production from formaldehyde solution at room temperature. Int. J. Hydrogen Energy 33, 2225–2232 (2008).

    CAS  Google Scholar 

  35. Gao, S. et al. Immobilizing AgPd alloy on Vulcan XC-72 carbon: a novel catalyst for highly efficient hydrogen generation from formaldehyde aqueous solution. RSC Adv. 6, 105638–105643 (2016).

    CAS  Google Scholar 

  36. Pan, X. et al. A novel biomass assisted synthesis of Au-SrTiO3 as a catalyst for direct hydrogen generation from formaldehyde aqueous solution at low temperature. Int. J. Hydrogen Energy 40, 1752–1759 (2015).

    CAS  Google Scholar 

  37. Hu, H., Jiao, Z., Ye, J., Lu, G. & Bi, Y. Highly efficient hydrogen production from alkaline aldehyde solutions facilitated by palladium nanotubes. Nano Energy 8, 103–109 (2014).

    CAS  Google Scholar 

  38. Kapoor, S. & Naumov, S. On the origin of hydrogen in the formaldehyde reaction in alkaline solution. Chem. Phys. Lett. 387, 322–326 (2004).

    CAS  Google Scholar 

  39. Lucas, F. W. S. et al. Electrochemical routes for the valorization of biomass-derived feedstocks: from chemistry to application. ACS Energy Lett. 6, 1205–1270 (2021).

    CAS  Google Scholar 

  40. Werpy, T. A., Holladay, J. E. & White, J. F. Top Value Added Chemicals from Biomass: I. Results of Screening for Potential Candidates from Sugars and Synthesis Gas Technical Report (US Department of Energy, 2004); https://doi.org/10.2172/15008859

  41. Zhao, D. Y., Rodriguez-Padron, D., Luque, R. & Len, C. Insights into the selective oxidation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid using silver oxide. ACS Sustain. Chem. Eng. 8, 8486–8495 (2020).

    CAS  Google Scholar 

  42. Deng, Y. L., Handoko, A. D., Du, Y. H., Xi, S. B. & Yeo, B. S. In situ Raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: identification of Cu-III oxides as catalytically active species. ACS Catal. 6, 2473–2481 (2016).

    CAS  Google Scholar 

  43. Li, M. et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2, 495–503 (2019).

    CAS  Google Scholar 

  44. Ursua, A., Gandia, L. M. & Sanchis, P. Hydrogen production from water electrolysis: current status and future trends. Proc. IEEE 100, 410–426 (2012).

    CAS  Google Scholar 

  45. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS  Google Scholar 

  46. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    CAS  Google Scholar 

  47. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Google Scholar 

  48. Perdew, J., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Google Scholar 

  49. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Google Scholar 

  50. Mathew, K., Sundararaman, R., Letchworth-Weaver, K., Arias, T. A. & Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).

    PubMed  Google Scholar 

  51. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    CAS  PubMed  Google Scholar 

  52. Mills, G. & Jonsson, H. Quantum and thermal effects in H2 dissociative adsorption: evaluation of free energy barriers in multidimensional quantum systems. Phys. Rev. Lett. 72, 1124–1127 (1994).

    CAS  PubMed  Google Scholar 

  53. Liu, X. et al. pH effects on the electrochemical reduction of CO2 towards C2 products on stepped copper. Nat. Commun. 10, 32 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China (grant nos. 2021YFA1500900 (S.W.)), the National Natural Science Foundation of China (grants nos. 21902047 (Y.Z.), 21825201 (S.W.) and U19A2017 (S.W.)) and the Provincial Natural Science Foundation of Hunan (grants nos. 2016TP1009 (S.W.) and 2020JJ5045 (S.W.)).

Author information

Authors and Affiliations

Authors

Contributions

S.W. and X.-Z.F. conceived the project. T.W. and L.T. carried out most of the experiments and co-wrote the manuscript. X.Z. and Y.L. performed the theoretical calculations. C.C., W.C., S.D. and Y.Z. performed partial characterization of the materials. B.Z., D.W., P.L., C.X., W.L., Y.W., R.C. and Y.Z. participated in data analysis. X.D. provided some important and constructive suggestions to this work. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yuqin Zou, Xian-Zhu Fu, Yafei Li, Xiangfeng Duan or Shuangyin Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Carlos Ponce de León, Lin Zhuang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–30, Discussion, Table 1 and Videos 1 and 2.

Supplementary Video 1

Control experiment of low-potential furfural oxidation using Ag/carbon cloth as the electrode.

Supplementary Video 2

Typical experiment for determining volumes of H2 produced from the anode and cathode of the bipolar hydrogen production system.

Supplementary Data 1

Computational data.

Supplementary Data 2

Statistical source data for Supplementary figures.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Tao, L., Zhu, X. et al. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat Catal 5, 66–73 (2022). https://doi.org/10.1038/s41929-021-00721-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00721-y

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing