Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A fundamental look at electrocatalytic sulfur reduction reaction


The fundamental kinetics of the electrocatalytic sulfur reduction reaction (SRR), a complex 16-electron conversion process in lithium–sulfur batteries, is so far insufficiently explored. Here, by directly profiling the activation energies in the multistep SRR, we reveal that the initial reduction of sulfur to the soluble polysulfides is relatively easy owing to the low activation energy, whereas the subsequent conversion of the polysulfides into the insoluble Li2S2/Li2S has a much higher activation energy, contributing to the accumulation of polysulfides and exacerbating the polysulfide shuttling effect. We use heteroatom-doped graphene as a model system to explore electrocatalytic SRR. We show that nitrogen and sulfur dual-doped graphene considerably reduces the activation energy to improve SRR kinetics. Density functional calculations confirm that the doping tunes the p-band centre of the active carbons for an optimal adsorption strength of intermediates and electroactivity. This study establishes electrocatalysis as a promising pathway to tackle the fundamental challenges facing lithium–sulfur batteries.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Activation energy in sulfur reduction and PS conversion reaction.
Fig. 2: Material characterizations of the N,S-HGF.
Fig. 3: Catalytic SRR activity and kinetic analyses of heteroatom-doped HGFs in RDE.
Fig. 4: DFT calculations on the activity origin of the heteroatom-doped HGFs on SRR.
Fig. 5: Activation energy profiles and overall performance of the heteroatom-doped HGF cathodes in Li–S coin cells.

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.


  1. 1.

    Manthiram, A., Fu, Y., Chung, S.-H., Zu, C. & Su, Y.-S. Rechargeable lithium–sulfur batteries. Chem. Rev. 114, 11751–11787 (2014).

    PubMed  CAS  Google Scholar 

  2. 2.

    Pang, Q., Liang, X., Kwok, C. Y. & Nazar, L. F. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016).

    CAS  Google Scholar 

  3. 3.

    Mikhaylik, Y. V. & Akridge, J. R. Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 151, A1969–A1976 (2004).

    CAS  Google Scholar 

  4. 4.

    Ma, L., Hendrickson, K. E., Wei, S. & Archer, L. A. Nanomaterials: Science and applications in the lithium–sulfur battery. Nano Today 10, 315–338 (2015).

    CAS  Google Scholar 

  5. 5.

    Seh, Z. W., Sun, Y., Zhang, Q. & Cui, Y. Designing high-energy lithium–sulfur batteries. Chem. Soc. Rev. 45, 5605–5634 (2016).

    PubMed  CAS  Google Scholar 

  6. 6.

    Bonaccorso, F. et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015).

    PubMed  Google Scholar 

  7. 7.

    Guo, B. et al. Highly dispersed sulfur in a porous aromatic framework as a cathode for lithium–sulfur batteries. Chem. Comm. 49, 4905–4907 (2013).

    PubMed  CAS  Google Scholar 

  8. 8.

    Li, L. et al. Stabilizing sulfur cathodes using nitrogen-doped graphene as a chemical immobilizer for LiS batteries. Carbon 108, 120–126 (2016).

    CAS  Google Scholar 

  9. 9.

    He, J. et al. Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li–S batteries. Energy Environ. Sci. 12, 344–350 (2019).

    CAS  Google Scholar 

  10. 10.

    Peng, L., Zhu, Y., Chen, D., Ruoff, R. S. & Yu, G. Two-dimensional materials for beyond-lithium-ion batteries. Adv. Energy Mater. 6, 1600025 (2016).

    Google Scholar 

  11. 11.

    Cui, Z., Zu, C., Zhou, W., Manthiram, A. & Goodenough, J. B. Mesoporous titanium nitride-enabled highly stable lithium–sulfur batteries. Adv. Mater. 28, 6926–6931 (2016).

  12. 12.

    Wang, D. et al. A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti3C2T2 MXene in lithium–sulfur batteries. ACS Nano 13, 11078–11086 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  13. 13.

    Zheng, J. et al. lewis acid–base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Lett. 14, 2345–2352 (2014).

    PubMed  CAS  Google Scholar 

  14. 14.

    Ji, X. & Nazar, L. F. Advances in Li–S batteries. J. Mater. Chem. 20, 9821–9826 (2010).

    CAS  Google Scholar 

  15. 15.

    Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

  16. 16.

    Du, Z. et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries. J. Am. Chem. Soc. 141, 3977–3985 (2019).

    PubMed  CAS  Google Scholar 

  17. 17.

    Xu, Z.-L. et al. Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat. Commun. 9, 4164 (2018).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Park, J. et al. Tungsten disulfide catalysts supported on a carbon cloth interlayer for high performance Li–S battery. Adv. Energy Mater. 7, 1602567 (2017).

    Google Scholar 

  19. 19.

    Wild, M. et al. Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci. 8, 3477–3494 (2015).

    CAS  Google Scholar 

  20. 20.

    Barchasz, C. et al. Lithium/sulfur cell discharge mechanism: An original approach for intermediate species identification. Anal. Chem. 84, 3973–3980 (2012).

    PubMed  CAS  Google Scholar 

  21. 21.

    Wang, L. et al. A quantum-chemical study on the discharge reaction mechanism of lithium-sulfur batteries. J. Energy Chem. 22, 72–77 (2013).

    Google Scholar 

  22. 22.

    Yin, Y.-X., Xin, S., Guo, Y.-G. & Wan, L.-J. Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52, 13186–13200 (2013).

    CAS  Google Scholar 

  23. 23.

    Tan, G. et al. Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–S batteries. Nat. Energy 2, 17090 (2017).

    CAS  Google Scholar 

  24. 24.

    Sun, H. et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356, 599–604 (2017).

    PubMed  CAS  Google Scholar 

  25. 25.

    Xu, Y. et al. Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, 4554 (2014).

    PubMed  CAS  Google Scholar 

  26. 26.

    Duan, J., Chen, S., Jaroniec, M. & Qiao, S. Z. Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catal. 5, 5207–5234 (2015).

    CAS  Google Scholar 

  27. 27.

    Zhou, H. et al. Understanding defect-stabilized noncovalent functionalization of graphene. Adv. Mater. Interfaces 2, 1500277 (2015).

    Google Scholar 

  28. 28.

    Wang, X. et al. Heteroatom-doped graphene materials: syntheses, properties and applications. Chem. Soc. Rev. 43, 7067–7098 (2014).

    PubMed  CAS  Google Scholar 

  29. 29.

    Paulus, U. A., Schmidt, T. J., Gasteiger, H. A. & Behm, R. J. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J. Electroanal. Chem. 495, 134–145 (2001).

    CAS  Google Scholar 

  30. 30.

    Suen, N.-T. et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337–365 (2017).

    PubMed  CAS  Google Scholar 

  31. 31.

    Li, M. et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2, 495–503 (2019).

    CAS  Google Scholar 

  32. 32.

    Li, M. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354, 1414–1419 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  33. 33.

    Lu, Y.-C., He, Q. & Gasteiger, H. A. Probing the lithium–sulfur redox reactions: a rotating-ring disk electrode study. J. Phys. Chem. C 118, 5733–5741 (2014).

    CAS  Google Scholar 

  34. 34.

    Zhou, R., Zheng, Y., Jaroniec, M. & Qiao, S.-Z. Determination of the electron transfer number for the oxygen reduction reaction: from theory to experiment. ACS Catal. 6, 4720–4728 (2016).

    CAS  Google Scholar 

  35. 35.

    Bazant, M. Z. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. Acc. Chem. Res. 46, 1144–1160 (2013).

    PubMed  CAS  Google Scholar 

  36. 36.

    Ogihara, N. et al. Theoretical and experimental analysis of porous electrodes for lithium-ion batteries by electrochemical impedance spectroscopy using a symmetric cell. J. Electrochem. Soc. 159, A1034–A1039 (2012).

    CAS  Google Scholar 

  37. 37.

    Li, M., Zhang, L., Xu, Q., Niu, J. & Xia, Z. N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: Theoretical considerations. J. Catal. 314, 66–72 (2014).

    CAS  Google Scholar 

  38. 38.

    Zhou, G., Paek, E., Hwang, G. S. & Manthiram, A. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 6, 7760 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  39. 39.

    Ji, Z. et al. Anchoring lithium polysulfides via affinitive interactions: electrostatic attraction, hydrogen bonding, or in parallel? J. Phys. Chem. C 119, 20495–20502 (2015).

    CAS  Google Scholar 

  40. 40.

    Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Google Scholar 

  41. 41.

    Hammer, B. & Nørskov, J. K. Why gold is the noblest of all the metals. Nature 376, 238–240 (1995).

    CAS  Google Scholar 

  42. 42.

    Fei, H. et al. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 48, 5207–5241 (2019).

    PubMed  CAS  Google Scholar 

  43. 43.

    Wang, D. & Astruc, D. The recent development of efficient earth-abundant transition-metal nanocatalysts. Chem. Soc. Rev. 46, 816–854 (2017).

    PubMed  CAS  Google Scholar 

  44. 44.

    Xu, Y., Sheng, K., Li, C. & Shi, G. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4, 4324–4330 (2010).

    PubMed  CAS  Google Scholar 

  45. 45.

    Fei, H. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018).

    CAS  Google Scholar 

  46. 46.

    Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Google Scholar 

  47. 47.

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS  Google Scholar 

  48. 48.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    PubMed  CAS  Google Scholar 

  49. 49.

    Steinmann, S. N. & Corminboeuf, C. Comprehensive benchmarking of a density-dependent dispersion correction. J. Chem. Theory Comput. 7, 3567–3577 (2011).

    PubMed  CAS  Google Scholar 

  50. 50.

    Steinmann, S. N. & Corminboeuf, C. A generalized-gradient approximation exchange hole model for dispersion coefficients. J. Chem. Phys. 134, 044117 (2011).

    PubMed  Google Scholar 

  51. 51.

    Mathew, K., Sundararaman, R., Letchworth-Weaver, K., Arias, T. A. & Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).

    PubMed  Google Scholar 

  52. 52.

    Towns, J. et al. XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16, 62–74 (2014).

    Google Scholar 

Download references


This work is supported by the Center for Synthetic Control Across Length-scales for Advancing Rechargeables, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science Basic Energy Sciences programme under award DE-SC0019381. Y.H. acknowledges the support by Office of Naval Research through grant no. N00010141712608 (initial effort on catalyst preparation and rotating disc electrode electrochemical characterizations). I.M. and Z.A. acknowledge the support by the International Scientific Partnership Program (ISPP-147) at King Saud University. We acknowledge the Electron Imaging Center at UCLA for SEM technical support and the Nanoelectronics Research Facility at UCLA for device fabrication technical support. We thank Diamond Light Source for access and support in use of the electron Physical Science Imaging Centre (MG23956). The calculations were performed on the Hoffman2 cluster at UCLA Institute for Digital Research and Education (IDRE), The National Energy Research Scientific Computing Center (NERSC), and the Extreme Science and Engineering Discovery Environment (XSEDE)52, which is supported by National Science Foundation grant number ACI-1548562, through allocation TG-CHE170060.

Author information




X.D., Y.H. and L.P. conceived and designed the experimental research. P.S. and Z.W. designed and performed the DFT calculations. L.P. performed the experiments and conducted the data analysis with contributions from C.W., J.L., Z.C., D.Z., D.B., H.L., X.X., I.S., Z.A., S.T., B.D., Y.H. and X.D. C.S.A. and A.I.K. contributed to the TEM characterizations. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yu Huang or Philippe Sautet or Xiangfeng Duan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Discussion, and Tables 1 and 2.

Supplementary Data

Atomic coordinates of the optimized computational models.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peng, L., Wei, Z., Wan, C. et al. A fundamental look at electrocatalytic sulfur reduction reaction. Nat Catal 3, 762–770 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing