Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An asynchronous wireless network for capturing event-driven data from large populations of autonomous sensors

Abstract

Networks of spatially distributed radiofrequency identification sensors could be used to collect data in wearable or implantable biomedical applications. However, the development of scalable networks remains challenging. Here we report a wireless radiofrequency network approach that can capture sparse event-driven data from large populations of spatially distributed autonomous microsensors. We use a spectrally efficient, low-error-rate asynchronous networking concept based on a code-division multiple-access method. We experimentally demonstrate the network performance of several dozen submillimetre-sized silicon microchips and complement this with large-scale in silico simulations. To test the notion that spike-based wireless communication can be matched with downstream sensor population analysis by neuromorphic computing techniques, we use a spiking neural network machine learning model to decode prerecorded open source data from eight thousand spiking neurons in the primate cortex for accurate prediction of hand movement in a cursor control task.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ASBIT-based communications system overview.
Fig. 2: Prototype of ASBIT system-on-chip wireless ASIC with on-chip oscillator, coil antenna and digital logic circuit.
Fig. 3: An improvement of EER and network capacity for microchips with clock frequency divider.
Fig. 4: Transmitting and decoding over 8,000 channels of spiking neural data.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Custom-developed MATLAB code for RF simulation and demodulation for the ASBIT protocol is available in the Supplementary Information and from the corresponding author upon reasonable request.

References

  1. Lee, J. et al. Neural recording and stimulation using wireless networks of microimplants. Nat. Electron. 4, 604–614 (2021).

    Article  Google Scholar 

  2. Buettner, M. et al. RFID sensor networks with the Intel WISP. In Proc. of the 6th ACM Conference on Embedded Network Sensor Systems 393–394 (Association for Computing Machinery, 2008).

  3. Kang, Y.-S., Park, I.-H., Rhee, J. & Lee, Y.-H. MongoDB-based repository design for IoT-generated RFID/sensor big data. IEEE Sens. J. 16, 485–497 (2015).

    Article  Google Scholar 

  4. Vogt, H. Efficient object identification with passive RFID tags. International Conference on Pervasive Computing (eds Mattern, F. & Naghshineh, M.) 98–113 (Springer, 2002).

  5. Lanzolla, A. & Spadavecchia, M. Wireless sensor networks for environmental monitoring. Sensors 21, 1172 (2021).

    Article  Google Scholar 

  6. Darwish, A. & Hassanien, A. E. Wearable and implantable wireless sensor network solutions for healthcare monitoring. Sensors 11, 5561–5595 (2011).

    Article  Google Scholar 

  7. Xu, L. D., He, W. & Li, S. Internet of things in industries: a survey. IEEE Trans. Ind. Inf. 10, 2233–2243 (2014).

    Article  Google Scholar 

  8. Li, S., Xu, L. D. & Zhao, S. The internet of things: a survey. Inf. Syst. Front. 17, 243–259 (2015).

    Article  Google Scholar 

  9. Mainetti, L., Patrono, L. & Vilei, A. Evolution of wireless sensor networks towards the internet of things: a survey. SoftCOM 2011, 19th International Conference on Software, Telecommunications and Computer Networks (ed. Rozic, N.) 1–6 (IEEE, 2011).

  10. Liu, S.-C. & Delbruck, T. Neuromorphic sensory systems. Curr. Opin. Neurobiol. 20, 288–295 (2010).

    Article  Google Scholar 

  11. Indiveri, G. & Douglas, R. Neuromorphic vision sensors. Science 288, 1189–1190 (2000).

    Article  Google Scholar 

  12. Vanarse, A., Osseiran, A. & Rassau, A. A review of current neuromorphic approaches for vision, auditory, and olfactory sensors. Front. Neurosci. 10, 115 (2016).

    Article  Google Scholar 

  13. Polyanskiy, Y. A perspective on massive random-access. In 2017 IEEE International Symposium on Information Theory (ISIT) 2523–2527 (IEEE, 2017).

  14. Fengler, A., Jung, P. & Caire, G. SPARCs for unsourced random access. IEEE Trans. Inf. Theory 67, 6894–6915 (2021).

    Article  MathSciNet  Google Scholar 

  15. Amalladinne, V. K., Chamberland, J. F. & Narayanan, K. R. A coded compressed sensing scheme for unsourced multiple access. IEEE Trans. Inf. Theory 66, 6509–6533 (2020).

    Article  MathSciNet  Google Scholar 

  16. Klair, D. K., Chin, K.-W. & Raad, R. A survey and tutorial of RFID anti-collision protocols. IEEE Commun. Surv. Tutor. 12, 400–421 (2010).

    Article  Google Scholar 

  17. Liva, G. Graph-based analysis and optimization of contention resolution diversity slotted ALOHA. IEEE Trans. Commun. 59, 477–487 (2010).

    Article  Google Scholar 

  18. Chen, J., Skatchkovsky, N. & Simeone, O. Neuromorphic integrated sensing and communications. IEEE Wirel. Commun. Lett. 12, 476–480 (2022).

  19. Chen, J., Skatchkovsky, N. & Simeone, O. Neuromorphic wireless cognition: event-driven semantic communications for remote inference. IEEE Trans. Cogn. Commun. Netw. 9, 252–265 (2023).

  20. Culurciello, E., Etienne-Cummings, R. & Boahen, K. Arbitrated address event representation digital image sensor. 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No. 01CH37177) (ed. Wuorinen, J. H.) 92–93 (IEEE, 2001).

  21. Mutti, C. & Floerkemeier, C. CDMA-based RFID systems in dense scenarios: concepts and challenges. In 2008 IEEE International Conference on RFID 215–222 (IEEE, 2008).

  22. Yang, Q., Wang, H.-M., Zheng, T.-X., Han, Z. & Lee, M. H. Wireless powered asynchronous backscatter networks with sporadic short packets: performance analysis and optimization. IEEE Internet Things J. 5, 984–997 (2018).

    Article  Google Scholar 

  23. Costello, J. T. et al. A low-power communication scheme for wireless, 1000 channel brain–machine interfaces. J. Neural Eng. 19, 036037 (2022).

    Article  Google Scholar 

  24. He, Y. et al. An implantable neuromorphic sensing system featuring near-sensor computation and send-on-delta transmission for wireless neural sensing of peripheral nerves. IEEE J. Solid-State Circuits 57, 3058–3070 (2022).

    Article  Google Scholar 

  25. Kiani, M. & Ghovanloo, M. An RFID-based closed-loop wireless power transmission system for biomedical applications. IEEE Trans. Circuits Syst. II 57, 260–264 (2010).

    Google Scholar 

  26. Ghovanloo, M. & Atluri, S. An integrated full-wave CMOS rectifier with built-in back telemetry for RFID and implantable biomedical applications. IEEE Trans. Circuits Syst. I 55, 3328–3334 (2008).

    Article  MathSciNet  Google Scholar 

  27. Occhiuzzi, C., Cippitelli, S. & Marrocco, G. Modeling, design and experimentation of wearable RFID sensor tag. IEEE Trans. Antennas Propag. 58, 2490–2498 (2010).

    Article  Google Scholar 

  28. Marrocco, G. RFID antennas for the UHF remote monitoring of human subjects. IEEE Trans. Antennas Propag. 55, 1862–1870 (2007).

    Article  Google Scholar 

  29. Xiao, Z. et al. An implantable RFID sensor tag toward continuous glucose monitoring. IEEE J. Biomed. Health Inform. 19, 910–919 (2015).

    Google Scholar 

  30. Rose, D. P. et al. Adhesive RFID sensor patch for monitoring of sweat electrolytes. IEEE Trans. Biomed. Eng. 62, 1457–1465 (2014).

    Article  Google Scholar 

  31. Niu, S. et al. A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2, 361–368 (2019).

    Article  Google Scholar 

  32. Yeon, P., Bakir, M. S. & Ghovanloo, M. Towards a 1.1 mm2 free-floating wireless implantable neural recording soc. In 2018 IEEE Custom Integrated Circuits Conference (CICC) 1–4 (IEEE, 2018).

  33. Bandodkar, A. J. et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 5, eaav3294 (2019).

    Article  Google Scholar 

  34. Lee, J. et al. An implantable wireless network of distributed microscale sensors for neural applications. In 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER) 871–874 (IEEE, 2019).

  35. Leung, V. W. et al. Distributed microscale brain implants with wireless power transfer and Mbps bi-directional networked communications. In 2019 IEEE Custom Integrated Circuits Conference (CICC) 1–4 (IEEE, 2019).

  36. Nurmikko, A. Challenges for large-scale cortical interfaces. Neuron 108, 259–269 (2020).

    Article  Google Scholar 

  37. Nurmikko, A. V. et al. Listening to brain microcircuits for interfacing with external world—progress in wireless implantable microelectronic neuroengineering devices. Proc. IEEE 98, 375–388 (2010).

    Article  Google Scholar 

  38. Hochberg, L. R. et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 (2006).

    Article  Google Scholar 

  39. Seo, D., Carmena, J. M., Rabaey, J. M., Alon, E. & Maharbiz, M. M. Neural dust: an ultrasonic, low-power solution for chronic brain–machine interfaces. Preprint at https://doi.org/10.48550/arXiv.1307.2196 (2013).

  40. Olshausen, B. A. & Field, D. J. Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 14, 481–487 (2004).

    Article  Google Scholar 

  41. Foldiak, P. in The Handbook of Brain Theory and Neural Networks 2nd edn (ed. Arbib, M.) 1064–1067 (MIT, 2003).

  42. Dinan, E. H. & Jabbari, B. Spreading codes for direct sequence CDMA and wideband CDMA cellular networks. IEEE Commun. Mag. 36, 48–54 (1998).

    Article  Google Scholar 

  43. Man, A. S. et al. Design and implementation of a low-power baseband-system for RFID tag. In 2007 IEEE International Symposium on Circuits and Systems 1585–1588 (IEEE, 2007).

  44. Baghaei-Nejad, M. et al. A remote-powered RFID tag with 10Mb/s UWB uplink and -18.5 dBm sensitivity UHF downlink in 0.18 µm CMOS. 2009 IEEE International Solid-State Circuits Conference-Digest of Technical Papers (ed. Fujino, L. C.) 198–199 (IEEE, 2009).

  45. Hwang, Y.-S. & Lin, H.-C. A new CMOS analog front end for RFID tags. IEEE Trans. Ind. Electron. 56, 2299–2307 (2009).

    Article  Google Scholar 

  46. Yin, J. et al. A system-on-chip EPC gen-2 passive UHF RFID tag with embedded temperature sensor. IEEE J. Solid-State Circuits 45, 2404–2420 (2010).

    Google Scholar 

  47. Orchard, G. et al. Efficient neuromorphic signal processing with Loihi 2. 2021 IEEE Workshop on Signal Processing Systems (SiPS) (ed. O’Dell, M.) 254–259 (IEEE, 2021).

  48. Heelan, C. et al. Decoding speech from spike-based neural population recordings in secondary auditory cortex of non-human primates. Commun. Biol. 2, 466 (2019).

    Article  Google Scholar 

  49. Heelan, C., Nurmikko, A. V. & Truccolo, W. FPGA implementation of deep-learning recurrent neural networks with sub-millisecond real-time latency for BCI-decoding of large-scale neural sensors (104 nodes). 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (ed. Patton, J.) 1070–1073 (IEEE, 2018).

  50. Fagg, A. H., Ojakangas, G. W., Miller, L. E. & Hatsopoulos, N. G. Kinetic trajectory decoding using motor cortical ensembles. IEEE Trans. Neural Syst. Rehabil. Eng. 17, 487–496 (2009).

    Article  Google Scholar 

  51. Benjamin, A. S. et al. Modern machine learning as a benchmark for fitting neural responses. Front. Comput. Neurosci. 12, 56 (2018).

    Article  Google Scholar 

  52. Ghosh-Dastidar, S. & Adeli, H. Spiking neural networks. Int. J. Neural Syst. 19, 295–308 (2009).

    Article  Google Scholar 

  53. Orchard, G., Jayawant, A., Cohen, G. K. & Thakor, N. Converting static image datasets to spiking neuromorphic datasets using saccades. Front. Neurosci. 9, 437 (2015).

    Article  Google Scholar 

  54. Dethier, J., Nuyujukian, P., Ryu, S. I., Shenoy, K. V. & Boahen, K. Design and validation of a real-time spiking-neural-network decoder for brain–machine interfaces. J. Neural Eng. 10, 036008 (2013).

    Article  Google Scholar 

  55. Kumarasinghe, K., Kasabov, N. & Taylor, D. Brain-inspired spiking neural networks for decoding and understanding muscle activity and kinematics from electroencephalography signals during hand movements. Sci. Rep. 11, 2486 (2021).

    Article  Google Scholar 

  56. Burns, B. D. & Webb, A. The spontaneous activity of neurones in the cat’s cerebral cortex. Proc. R. Soc. Lond. B 194, 211–223 (1976).

    Article  Google Scholar 

  57. Mizuseki, K. & Buzsáki, G. Preconfigured, skewed distribution of firing rates in the hippocampus and entorhinal cortex. Cell Rep. 4, 1010–1021 (2013).

    Article  Google Scholar 

  58. Glaser, J. I. et al. Machine learning for neural decoding. Eneuro 7, 4 (2020).

    Article  Google Scholar 

  59. LAVA-DL. Lava-nc/lava-dl. GitHub https://github.com/lava-nc/lava-dl (2023).

  60. Wong, T.-T. & Yeh, P.-Y. Reliable accuracy estimates from k-fold cross-validation. IEEE Trans. Knowl. Data Eng. 32, 1586–1594 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge N. Fathy, J. Huang, S. Li, S. Yu, L. Cui, S. Alluri and M. Lokhandwala at UCSD for their previous work on ASIC backbone design. We also thank Y.-K. Song and D. Durfee for their insights into ASIC and hardware design and T. Shea and M. Davies at Intel Labs for sharing their expertise of SNN technologies. We have greatly benefited from the insight of our colleagues across multiple fields from microelectronics to brain sciences and clinical neurology: P. Asbeck, J. Donoghue, B. Dutta, J. Groe, L. Hochberg, T. Sejnowsky, K. Shenoy and S. Cash, among others. This research was supported by private gifts and NIH Award 1S10OD025181 (Brown University for computational resources).

Author information

Authors and Affiliations

Authors

Contributions

A.N. conceived the project. A.N. and J.L. designed the ASBIT wireless data communication method. J.L. and A.-H.L. designed the wireless ASICs and performed the experiments. J.L., A.-H.L. and A.N. wrote the paper. All authors contributed to the data analysis and provided feedback on the manuscript.

Corresponding author

Correspondence to Arto Nurmikko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, Notes 1–6 and Tables 1 and 2.

Supplementary Code

Example data and code.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Lee, AH., Leung, V. et al. An asynchronous wireless network for capturing event-driven data from large populations of autonomous sensors. Nat Electron 7, 313–324 (2024). https://doi.org/10.1038/s41928-024-01134-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-024-01134-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing