Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A tunable room-temperature nonlinear Hall effect in elemental bismuth thin films

Abstract

The nonlinear Hall effect with time-reversal symmetry is a second-order electronic transport phenomenon—seen as a quadratic voltage transverse to an applied electric field—that induces frequency doubling and occurs in non-centrosymmetric crystals with large Berry curvature. Optoelectronic devices based on this effect are limited because it typically appears at low temperatures and in complex compounds characterized by Dirac or Weyl electrons. Here we report a room-temperature nonlinear Hall effect in polycrystalline thin films of the centrosymmetric elemental material bismuth. The electrons at the (111) surface possess a Berry curvature triple that activates side jumps and skew scatterings, which generate nonlinear transverse currents. We show that the zero-field nonlinear transverse voltage can be boosted in arc-shaped bismuth stripes due to an extrinsic geometric classical counterpart of the nonlinear Hall effect. The electrical frequency doubling in curved geometries can be extended to optical second-harmonic generation in the terahertz spectral range. We also demonstrate efficient third-harmonic generation in polycrystalline bismuth films and bismuth-based heterostructures across a broad range of terahertz frequencies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quantum properties and surface states of polycrystalline Bi thin films.
Fig. 2: Magnetotransport and nonlinear Hall effect in Bi thin films.
Fig. 3: Geometric nonlinear Hall effect in arc-shaped Bi Hall bars.
Fig. 4: Highly efficient and tunable THz high-harmonic generation in Bi-based systems.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Sodemann, I. & Fu, L. Quantum non-linear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    Google Scholar 

  2. Ortix, C. Non-linear Hall effect with time-reversal symmetry: theory and material realizations. Adv. Quantum Technol. 4, 2100056 (2021).

    Google Scholar 

  3. Du, Z. Z., Lu, H.-Z. & Xie, X. C. Non-linear Hall effects. Nat. Rev. Phys. 3, 744 (2021).

    Google Scholar 

  4. Wawrzik, D., Facio, J. I. & van den Brink, J. Surface induced electronic Berry curvature in bulk Berry curvature free materials. Mater. Today Phys. 33, 101027 (2023).

    Google Scholar 

  5. He, P. et al. Quantum frequency doubling in the topological insulator Bi2Se3. Nat. Commun. 12, 698 (2021).

    Google Scholar 

  6. Zhang, S.-C. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438 (2009).

    Google Scholar 

  7. Du, Z. Z., Wang, C. M., Li, S., Lu, H.-Z. & Xie, X. C. Disorder-induced non-linear Hall effect with time-reversal symmetry. Nat. Commun. 10, 3047 (2019).

    Google Scholar 

  8. Xiao, C., Du, Z. Z. & Niu, Q. Theory of non-linear Hall effects: modified semiclassics from quantum kinetics. Phys. Rev. B 100, 165422 (2019).

    Google Scholar 

  9. Orenstein, J. et al. Topology and symmetry of quantum materials via non-linear optical responses. Annu. Rev. Condens. Matter Phys. 12, 247 (2021).

    Google Scholar 

  10. Zhang, Y. & Fu, L. Terahertz detection based on non-linear Hall effect without magnetic field. Proc. Natl Acad. Sci. USA 118, e2100736118 (2021).

    Google Scholar 

  11. Isobe, H., Xu, S.-Y. & Fu, L. High-frequency rectification via chiral Bloch electrons. Science Advances 6, eaay2497 (2020).

    Google Scholar 

  12. Kumar, D. et al. Room-temperature non-linear Hall effect and wireless radiofrequency rectification in Weyl semimetal TaIrTe4. Nat. Nanotechnol. 16, 421–425 (2021).

    Google Scholar 

  13. Min, L. et al. Strong room-temperature bulk non-linear Hall effect in a spin-valley locked Dirac material. Nat. Commun. 14, 364 (2023).

    Google Scholar 

  14. Xu, S.-Y. et al. Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2. Nat. Phys. 14, 900 (2018).

    Google Scholar 

  15. You, J.-S., Fang, S., Xu, S.-Y., Kaxiras, E. & Low, T. Berry curvature dipole current in the transition metal dichalcogenides family. Phys. Rev. B 98, 121109 (2018).

    Google Scholar 

  16. Zhang, Y., van den Brink, J., Felser, C. & Yan, B. Electrically tuneable non-linear anomalous Hall effect in two-dimensional transition-metal dichalcogenides WTe2 and MoTe2. 2D Mater. 5, 044001 (2018).

    Google Scholar 

  17. Du, Z. Z., Wang, C. M., Lu, H.-Z. & Xie, X. C. Band signatures for strong non-linear Hall effect in bilayer WTe2. Phys. Rev. Lett. 121, 266601 (2018).

    Google Scholar 

  18. Son, J., Kim, K.-H., Ahn, Y. H., Lee, H.-W. & Lee, J. Strain engineering of the Berry curvature dipole and valley magnetization in monolayer MoS2. Phys. Rev. Lett. 123, 036806 (2019).

    Google Scholar 

  19. Ma, Q. et al. Observation of the non-linear Hall effect under time-reversal-symmetric conditions. Nature 565, 337 (2019).

    Google Scholar 

  20. Kang, K., Li, T., Sohn, E., Shan, J. & Mak, K. F. Non-linear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18, 324 (2019).

    Google Scholar 

  21. Singh, S., Kim, J., Rabe, K. M. & Vanderbilt, D. Engineering Weyl phases and non-linear Hall effects in Td-MoTe2. Phys. Rev. Lett. 125, 046402 (2020).

    Google Scholar 

  22. Ma, T. et al. Growth of bilayer MoTe2 single crystals with strong non-linear hall effect. Nat. Commun. 13, 5465 (2022).

  23. Battilomo, R., Scopigno, N. & Ortix, C. Berry curvature dipole in strained graphene: a Fermi surface warping effect. Phys. Rev. Lett. 123, 196403 (2019).

  24. Ho, S.-C. et al. Hall effects in artificially corrugated bilayer graphene without breaking time-reversal symmetry. Nat. Electron. 4, 116 (2021).

    Google Scholar 

  25. Lesne, E. et al. Designing spin and orbital sources of Berry curvature at oxide interfaces. Nat. Mater. 22, 576 (2023).

    Google Scholar 

  26. Koroteev, Y. M., Bihlmayer, G., Chulkov, E. V. & Blügel, S. First-principles investigation of structural and electronic properties of ultrathin Bi films. Phys. Rev. B 77, 045428 (2008).

    Google Scholar 

  27. Du, H. et al. Surface Landau levels and spin states in bismuth (111) ultrathin films. Nat. Commun. 7, 10814 (2016).

    Google Scholar 

  28. Gentile, P. et al. Electronic materials with nanoscale curved geometries. Nat. Electron. 5, 551 (2022).

    Google Scholar 

  29. Schade, N. B., Schuster, D. I. & Nagel, S. R. A non-linear, geometric Hall effect without magnetic field. Proc. Natl Acad. Sci. USA 116, 24475 (2019).

    Google Scholar 

  30. Battilomo, R., Scopigno, N. & Ortix, C. Anomalous planar Hall effect in two-dimensional trigonal crystals. Phys. Rev. Research 3, L012006 (2021).

    Google Scholar 

  31. Zhu, Z. et al. Emptying Dirac valleys in bismuth using high magnetic fields. Nat. Commun. 8, 15297 (2017).

    Google Scholar 

  32. Abrikosov, A. A. Quantum magnetoresistance. Phys. Rev. B 58, 2788 (1998).

    Google Scholar 

  33. Kovalev, S. et al. Terahertz signatures of ultrafast Dirac fermion relaxation at the surface of topological insulators. npj Quantum Mater. 6, 84 (2021).

    Google Scholar 

  34. Giorgianni, F. et al. Strong non-linear terahertz response induced by dirac surface states in Bi2Se3 topological insulator. Nat. Commun. 7, 11421 (2016).

    Google Scholar 

  35. Kovalev, S. et al. Electrical tunability of terahertz non-linearity in graphene. Sci. Adv. 7, eabf9809 (2021).

    Google Scholar 

  36. Kovalev, S. et al. Non-perturbative terahertz high-harmonic generation in the three-dimensional dirac semimetal Cd3As2. Nat. Commun. 11, 2451 (2020).

    Google Scholar 

  37. Schindler, F. et al. Higher-order topology in bismuth. Nat. Phys. 14, 918 (2018).

    Google Scholar 

  38. Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    Google Scholar 

  39. Altland, A. & Zirnbauer, M. R. Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B 55, 1142 (1997).

    Google Scholar 

  40. Fu, L. Hexagonal warping effects in the surface states of the topological insulator Bi2Te3. Phys. Rev. Lett. 103, 266801 (2009).

    Google Scholar 

  41. Zubko, P., Catalan, G. & Tagantsev, A. K. Flexoelectric effect in solids. Annu. Rev. Mater. Res. 43, 387 (2013).

    Google Scholar 

  42. Wen, Y. et al. A universal route to efficient non-linear response via Thomson scattering in linear solids. Natl Sci. Rev. 10, nwad136 (2023).

    Google Scholar 

  43. Yan, B. et al. Topological states on the gold surface. Nat. Commun. 6, 10167 (2015).

    Google Scholar 

  44. Tielrooij, K.-J. et al. Milliwatt terahertz harmonic generation from topological insulator metamaterials. Light Sci. Appli. 11, 315 (2022).

    Google Scholar 

  45. Principi, A. & Tielrooij, K.-J. Ultrafast electronic heat dissipation through surface-to-bulk Coulomb coupling in quantum materials. Phys. Rev. B 106, 115422 (2022).

    Google Scholar 

  46. Yang, F. Y. et al. Large magnetoresistance of electrodeposited single-crystal bismuth thin films. Science 284, 1335 (1999).

    Google Scholar 

  47. Melzer, M. et al. Wearable magnetic field sensors for flexible electronics. Adv. Mater. 27, 1274 (2015).

    Google Scholar 

  48. Oliveros-Mata, E. S. et al. Dispenser printed bismuth-based magnetic field sensors with non-saturating large magnetoresistance for touchless interactive surfaces. Adv. Mater. Technol. 7, 2200227 (2022).

    Google Scholar 

  49. Tiwari, A. et al. Giant c-axis non-linear anomalous hall effect in Td-Mote2 and WTe2. Nat. Commun. 12, 2049 (2021).

    Google Scholar 

  50. He, P. et al. Graphene moirésuperlattices with giant quantum non-linearity of chiral Bloch electrons. Nat. Nanotechnol. 17, 378 (2022).

    Google Scholar 

Download references

Acknowledgements

We thank C. Schubert (HZDR) for support with thin film deposition, L. Baraban (HZDR) for providing access to the measurement equipment for harmonic analysis and O. Hellwig (HZDR, TU Chemnitz) for providing access to the XRD tool. This research was carried out in part at the Ion Beam Center and ELBE large-scale facilities at the Helmholtz-Zentrum Dresden-Rossendorf e.V., member of the Helmholtz Association. We acknowledge the support of the Dresden High Magnetic Field Laboratory at the Helmholtz-Zentrum Dresden-Rossendorf e.V., member of the European Magnetic Field Laboratory (EMFL). This work is financed in part via the German Research Foundation (DFG) under Grant Numbers MA 5144/22-1, MA 5144/24-1 and MA 5144/33-1, and European Commission HORIZON RIA (project REGO; ID: 101070066).

Author information

Authors and Affiliations

Authors

Contributions

C.O. and D.M. developed the project idea. P.M. prepared samples and performed magnetotransport characterization with support from Y.Z., T.K. and D.M. S.K., I.I., A.P., A.A., G.L.P., T.O. and J.-C.D. performed THz studies. P.C. carried out electron microscopy measurements. F.G. performed XRD measurements with support from I.V. C.O. developed the theoretical description of the transport effects in Bi thin films. Y.S. carried out high-field magnetoresistance measurements with the support from I.V. The paper was written by C.O., P.M. and D.M. with contribution from S.K., T.K., I.I., A.P., P.C., Y.Z., I.V., Y.S., F.G., A.A., G.L.P., T.O. and J.-C.D.

Corresponding authors

Correspondence to Denys Makarov or Carmine Ortix.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Cong Xiao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections I–V, Figs. 1–17 and references.

Supplementary Data 1

The file contains multiple tabs, each corresponding to a Supplementary figure.

Source data

Source Data Fig. 1

The file contains multiple tabs, each corresponding to the individual panels of Fig. 1.

Source Data Fig. 2

The file contains multiple tabs, each corresponding to the individual panels of Fig. 2.

Source Data Fig. 3

The file contains multiple tabs, each corresponding to the individual panels of Fig. 3.

Source Data Fig. 4

The file contains multiple tabs, each corresponding to the individual panels of Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makushko, P., Kovalev, S., Zabila, Y. et al. A tunable room-temperature nonlinear Hall effect in elemental bismuth thin films. Nat Electron 7, 207–215 (2024). https://doi.org/10.1038/s41928-024-01118-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-024-01118-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing