Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Third-order nonlinear Hall effect induced by the Berry-connection polarizability tensor

Abstract

Nonlinear responses in transport measurements are linked to material properties not accessible at linear order1 because they follow distinct symmetry requirements2,3,4,5. While the linear Hall effect indicates time-reversal symmetry breaking, the second-order nonlinear Hall effect typically requires broken inversion symmetry1. Recent experiments on ultrathin WTe2 demonstrated this connection between crystal structure and nonlinear response6,7. The observed second-order nonlinear Hall effect can probe the Berry curvature dipole, a band geometric property, in non-magnetic materials, just like the anomalous Hall effect probes the Berry curvature in magnetic materials8,9. Theory predicts that another intrinsic band geometric property, the Berry-connection polarizability tensor10, gives rise to higher-order signals, but it has not been probed experimentally. Here, we report a third-order nonlinear Hall effect in thick Td-MoTe2 samples. The third-order signal is found to be the dominant response over both the linear- and second-order ones. Angle-resolved measurements reveal that this feature results from crystal symmetry constraints. Temperature-dependent measurement shows that the third-order Hall response agrees with the Berry-connection polarizability contribution evaluated by first-principles calculations. The third-order nonlinear Hall effect provides a valuable probe for intriguing material properties that are not accessible at lower orders and may be employed for high-order-response electronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of the BPT.
Fig. 2: Lattice structure, device configuration and nonlinear Hall effect of Td-MoTe2 at 5 K.
Fig. 3: Angle-dependence properties of Td-MoTe2 at 5 K.
Fig. 4: Temperature-dependence measurement and first-principles results for the BPT.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and the Supplementary Information. Other relevant data are available from the corresponding authors upon request. Source data are provided with this paper.

References

  1. Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    Article  Google Scholar 

  2. Zhang, Y., Sun, Y. & Yan, B. Berry curvature dipole in Weyl semimetal materials: an ab initio study. Phys. Rev. B 97, 041101 (2018).

    Article  CAS  Google Scholar 

  3. Du, Z. Z., Wang, C. M., Lu, H. Z. & Xie, X. C. Band signatures for strong nonlinear Hall effect in bilayer WTe2. Phys. Rev. Lett. 121, 266601 (2018).

    Article  CAS  Google Scholar 

  4. Du Z. Z., Wang C. M. X., Li S., Lu H. Z., Xie X. C. Disorder-induced nonlinear Hall effect with time-reversal symmetry. Nat. Commun. 10, (2019).

  5. Zhou, B. T., Zhang, C.-P. & Law, K. Highly tunable nonlinear Hall effects induced by spin–orbit couplings in strained polar transition-metal dichalcogenides. Phys. Rev. Appl. 13, 024053 (2020).

    Article  CAS  Google Scholar 

  6. Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).

    Article  CAS  Google Scholar 

  7. Kang, K., Li, T., Sohn, E., Shan, J. & Mak, K. F. Nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18, 324–328 (2019).

    Article  CAS  Google Scholar 

  8. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  Google Scholar 

  9. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959 (2010).

    Article  CAS  Google Scholar 

  10. Gao, Y., Yang, S. A. & Niu, Q. Field induced positional shift of Bloch electrons and its dynamical implications. Phys. Rev. Lett. 112, 166601 (2014).

    Article  Google Scholar 

  11. Klitzing, K. V. et al. Method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494 (1980).

    Article  Google Scholar 

  12. Cage, M. E. et al. The Quantum Hall Effect (Springer, 2012).

  13. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article  CAS  Google Scholar 

  14. Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).

    Article  Google Scholar 

  15. Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405 (1982).

    Article  CAS  Google Scholar 

  16. Sung, J. H. et al. Coplanar semiconductor–metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy. Nat. Nanotechnol. 12, 1064–1070 (2017).

    Article  CAS  Google Scholar 

  17. Song, Q. et al. The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy. Sci. Rep. 6, 29254 (2016).

    Article  Google Scholar 

  18. Tang, S. et al. Electronic structure of monolayer 1T′-MoTe2 grown by molecular beam epitaxy. APL Mater. 6, 026601 (2018).

    Article  Google Scholar 

  19. Keum, D. H. et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 11, 482–486 (2015).

    Article  CAS  Google Scholar 

  20. Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018).

    Article  CAS  Google Scholar 

  21. Gao, Y., Yang, S. A. & Niu, Q. Geometrical effects in orbital magnetic susceptibility. Phys. Rev. B 91, 214405 (2015).

    Article  Google Scholar 

  22. Gao, Y., Yang, S. A. & Niu, Q. Intrinsic relative magnetoconductivity of nonmagnetic metals. Phys. Rev. B 95, 165135 (2017).

    Article  Google Scholar 

  23. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  Google Scholar 

  24. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  25. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994).

    Article  CAS  Google Scholar 

  26. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  27. Marzari, N. & Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Singapore National Research Foundation through its Competitive Research Program (CRP award numbers NRF-CRP21-2018-0007, NRF-CRP22-2019-0004 and NRF-CRP23-2019-0002), the Singapore Ministry of Education (grant number MOE2016-T3-1-006 (S)) and the A*Star QTE programme.

Author information

Authors and Affiliations

Authors

Contributions

S.L. and W.G. conceived the project and designed the experiments. S.L. and Z.Z. constructed the measurement set-up and performed the transport experiments. H.L., J.Z., X.F. and S.A.Y. built the theoretical simulation model. N.W., C.T. and Y.L. conducted materials characterization and plasma etching experiments. K.S.N., S.A.Y. and W.G. supervised the project. All authors contributed extensively to the final manuscript.

Corresponding authors

Correspondence to K. S. Novoselov, Shengyuan A. Yang or Wei-bo Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Su-Yang Xu, Binghai Yan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22 and Discussion.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, S., Liu, H., Zhang, Z. et al. Third-order nonlinear Hall effect induced by the Berry-connection polarizability tensor. Nat. Nanotechnol. 16, 869–873 (2021). https://doi.org/10.1038/s41565-021-00917-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00917-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing