Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics

Abstract

Soft, stretchable and biocompatible conductors are required for on-skin and implantable electronics. Laser-induced graphene (LIG) can offer tuneable physical and chemical properties, and is of particular value in the development of monolithically integrated multifunctional stretchable bioelectronics. However, fabricating LIG-based nanocomposites with thin features and stretchable performance remains challenging. Here we report a thin elastic conductive nanocomposite that is formed by cryogenically transferring LIG to a hydrogel film. The low-temperature atmosphere enhances the interfacial bonding between the defective porous graphene and the crystallized water within the hydrogel. Using the hydrogel as an energy dissipation interface and out-of-plane electrical path, continuously deflected cracks can be induced in the LIG leading to an over fivefold enhancement in intrinsic stretchability. We use the approach to create multifunctional wearable sensors for on-skin monitoring and cardiac patches for in vivo detection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of stretchable graphene–hydrogel nanocomposites.
Fig. 2: Cryogenic transfer of LIG using an ultrathin PPH film.
Fig. 3: In vitro and in vivo antibacterial properties.
Fig. 4: Ultrathin PPH-enhanced LIG-based nanocomposites for multifunctional wearable sensors.
Fig. 5: A thin, stretchable and multimodal LIG-based sensor system for on-skin monitoring.
Fig. 6: A thin cardiac patch for in vivo detections.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request. Source data are provided with this paper.

Code availability

The source code used for analysing ECG signals are available from the corresponding authors on reasonable request.

References

  1. Choi, S., Han, S. I., Kim, D., Hyeon, T. & Kim, D. H. High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chem. Soc. Rev. 48, 1566–1595 (2018).

    Article  Google Scholar 

  2. Choi, S. et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13, 1048–1056 (2018).

    Article  Google Scholar 

  3. Zhao, Y. et al. Soft strain-insensitive bioelectronics featuring brittle materials. Science 378, 1222–1227 (2022).

    Article  Google Scholar 

  4. Jiang, Z. et al. A 1.3-micrometre-thick elastic conductor for seamless on-skin and implantable sensors. Nat. Electron. 5, 784–793 (2022).

    Article  Google Scholar 

  5. Yu, Y. et al. All-printed soft human-machine interface for robotic physicochemical sensing. Sci. Robot. 7, eabn0495 (2022).

    Article  Google Scholar 

  6. Hu, H. et al. A wearable cardiac ultrasound imager. Nature 613, 667–675 (2023).

    Article  Google Scholar 

  7. Song, E., Li, J., Won, S. M., Bai, W. & Rogers, J. A. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat. Mater. 19, 590–603 (2020).

    Article  Google Scholar 

  8. Deng, J. et al. Electrical bioadhesive interface for bioelectronics. Nat. Mater. 20, 229–236 (2020).

    Article  Google Scholar 

  9. Jung, D. et al. Highly conductive and elastic nanomembrane for skin electronics. Science 373, 1022–1026 (2021).

    Article  Google Scholar 

  10. Matsuhisa, N., Chen, X., Bao, Z. & Someya, T. Materials and structural designs of stretchable conductors. Chem. Soc. Rev. 48, 2946–2966 (2019).

    Article  Google Scholar 

  11. Guan, Y.-S. et al. Air/water interfacial assembled rubbery semiconducting nanofilm for fully rubbery integrated electronics. Sci. Adv. 6, eabb3656 (2020).

    Article  Google Scholar 

  12. Ma, Z. et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 20, 859–868 (2021).

    Article  Google Scholar 

  13. Kim, M., Lim, H. & Ko, S. H. Liquid metal patterning and unique properties for next-generation soft electronics. Adv. Sci. 10, e2205795 (2023).

    Article  Google Scholar 

  14. Kim, D. et al. Highly stretchable and oxidation-resistive Cu nanowire heater for replication of the feeling of heat in a virtual world. J. Mater. Chem. A 8, 8281–8291 (2020).

    Article  Google Scholar 

  15. Sim, K. et al. Fully rubbery integrated electronics from high effective mobility intrinsically stretchable semiconductors. Sci. Adv. 5, eaav5749 (2019).

  16. Zhu, C. et al. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat. Electron. 1, 183 (2018).

    Article  Google Scholar 

  17. Shim, H. et al. An elastic and reconfigurable synaptic transistor based on a stretchable bilayer semiconductor. Nat. Electron. 5, 660–671 (2022).

    Article  Google Scholar 

  18. Lee, S. Y. et al. Selective crack suppression during deformation in metal films on polymer substrates using electron beam irradiation. Nat. Commun. 10, 4454 (2019).

    Article  Google Scholar 

  19. Cho, C. et al. Strain-resilient electrical functionality in thin-film metal electrodes using two-dimensional interlayers. Nat. Electron. 4, 126–133 (2021).

    Article  Google Scholar 

  20. Kang, J. et al. Tough-interface-enabled stretchable electronics using non-stretchable polymer semiconductors and conductors. Nat. Nanotechnol. 17, 1265–1271 (2022).

    Article  Google Scholar 

  21. Won, D. et al. Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation. Sci. Adv. 8, eabo3209 (2022).

  22. Yang, D. et al. Multimodal e-textile enabled by one-step maskless patterning of femtosecond-laser-induced graphene on nonwoven, knit, and woven textiles. ACS Nano 17, 18893–18904 (2023).

    Article  Google Scholar 

  23. Shin, J. et al. Monolithic digital patterning of polydimethylsiloxane with successive laser pyrolysis. Nat. Mater. 20, 100 (2021).

    Article  Google Scholar 

  24. Yang, R. et al. Iontronic pressure sensor with high sensitivity over ultra-broad linear range enabled by laser-induced gradient micro-pyramids. Nat. Commun. 14, 2907 (2023).

    Article  Google Scholar 

  25. Zhao, G. et al. Laser-scribed conductive, photoactive transition metal oxide on soft elastomers for Janus on-skin electronics and soft actuators. Sci. Adv. 8, eabp9734 (2022).

    Article  MathSciNet  Google Scholar 

  26. Cui, S. et al. Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors. Opto-Electron. Adv. 6, 220172–220172 (2023).

    Article  Google Scholar 

  27. Li, J. et al. A tissue-like neurotransmitter sensor for the brain and gut. Nature 606, 94–101 (2022).

    Article  Google Scholar 

  28. Lin, J. et al. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, 5714–5721 (2014).

    Article  Google Scholar 

  29. Xu, K. et al. A wearable body condition sensor system with wireless feedback alarm functions. Adv. Mater. 33, 2008701 (2021).

    Article  Google Scholar 

  30. Luo, H. et al. A fully soft, self-powered vibration sensor by laser direct writing. Nano Energy 103, 107803 (2022).

    Article  Google Scholar 

  31. Jung, Y. et al. Smart paper electronics by laser-induced graphene for biodegradable real-time food spoilage monitoring. Appl. Mater. Today 29, 101589 (2022).

    Article  Google Scholar 

  32. Le, T. S. D., Park, S., An, J., Lee, P. S. & Kim, Y. J. Ultrafast laser pulses enable one‐step graphene patterning on woods and leaves for green electronics. Adv. Funct. Mater. 29, 1902771 (2019).

    Article  Google Scholar 

  33. Chyan, Y. et al. Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano 12, 2176–2183 (2018).

    Article  Google Scholar 

  34. Yang, Y. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38, 217 (2020).

    Article  Google Scholar 

  35. Zhang, S. et al. On-skin ultrathin and stretchable multifunctional sensor for smart healthcare wearables. npj Flex. Electron. 6, 11 (2022).

    Article  Google Scholar 

  36. Tu, J. et al. A wireless patch for the monitoring of C-reactive protein in sweat. Nat. Biomed. Eng. 7, 1293–1306 (2023).

    Article  Google Scholar 

  37. Wakabayashi, S., Arie, T., Akita, S., Nakajima, K. & Takei, K. A multi-tasking flexible sensor via reservoir computing. Adv. Mater. 34, 2201663 (2022).

    Article  Google Scholar 

  38. Sun, B. et al. Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv. Mater. 30, 1804327 (2018).

    Article  Google Scholar 

  39. Abdulhafez, M., Tomaraei, G. N. & Bedewy, M. Fluence-dependent morphological transitions in laser-induced graphene electrodes on polyimide substrates for flexible devices. ACS Appl. Nano Mater. 4, 2973–2986 (2021).

    Article  Google Scholar 

  40. Le, T. S. D. et al. Recent advances in laser‐induced graphene: mechanism, fabrication, properties, and applications in flexible electronics. Adv. Funct. Mater. 32, 2205158 (2022).

    Article  Google Scholar 

  41. Xing, H. et al. Ag nanoparticles-coated cotton fabric for durable antibacterial activity: derived from phytic acid–Ag complex. J. Text. Inst. 111, 855–861 (2019).

    Article  Google Scholar 

  42. A low cost and eco-friendly membrane from polyvinyl alcohol, chitosan and honey: synthesis, characterization and antibacterial property. J. Polym. Res. 28, 82 (2021).

  43. Yang, Z. et al. Highly stretchable, adhesive, biocompatible, and antibacterial hydrogel dressings for wound healing. Adv. Sci. 8, 2003627 (2021).

    Article  Google Scholar 

  44. Chen, C.-Y. et al. Ångstrom-scale silver particle-embedded carbomer gel promotes wound healing by inhibiting bacterial colonization and inflammation. Sci. Adv. 6, eaba0942 (2020).

    Article  Google Scholar 

  45. Zhang, Y. et al. Scarless wound healing programmed by core-shell microneedles. Nat. Commun. 14, 3431 (2023).

    Article  Google Scholar 

  46. Meng, Y. et al. Reactive metal boride nanoparticles trap lipopolysaccharide and peptidoglycan for bacteria-infected wound healing. Nat. Commun. 13, 7353 (2022).

    Article  Google Scholar 

  47. Matoori, S., Veves, A. & Mooney, D. J. Advanced bandages for diabetic wound healing. Sci. Transl. Med. 13, eabe4839 (2021).

    Article  Google Scholar 

  48. Majtan, J. Honey: an immunomodulator in wound healing. Wound Repair Regen. 22, 187–192 (2014).

    Article  Google Scholar 

  49. Bogdanov, S. Nature and origin of the antibacterial substances in honey. LWT Food Sci. Technol. 30, 748–753 (1997).

    Article  Google Scholar 

  50. Kwakman, P. H. et al. How honey kills bacteria. FASEB J. 24, 2576–2582 (2010).

    Article  Google Scholar 

  51. Dai, Z. et al. Mechanical behavior and properties of hydrogen bonded graphene/polymer nano-interfaces. Compos. Sci. Technol. 136, 1–9 (2016).

    Article  Google Scholar 

  52. Sun, J.-Y. et al. Inorganic islands on a highly stretchable polyimide substrate. J. Mater. Res. 24, 3338–3342 (2009).

    Article  Google Scholar 

  53. Wang, H. et al. Double-sided wearable multifunctional sensing system with anti-interference design for human-ambience interface. ACS Nano 16, 14679–14692 (2022).

    Article  Google Scholar 

  54. Kim, K. K. et al. A deep-learned skin sensor decoding the epicentral human motions. Nat. Commun. 11, 2149–2156 (2020).

    Article  Google Scholar 

  55. Kim, K. K. et al. A substrate-less nanomesh receptor with meta-learning for rapid hand task recognition. Nat. Electron. 6, 64–75 (2022).

    Google Scholar 

  56. Lu, Y. et al. Multimodal plant healthcare flexible sensor system. ACS Nano 14, 10966–10975 (2020).

    Article  Google Scholar 

  57. Wu, J. et al. An intrinsically stretchable humidity sensor based on anti-drying, self-healing and transparent organohydrogels. Mater. Horiz. 6, 595–603 (2019).

    Article  Google Scholar 

  58. Shao, Q., Liu, G., Teweldebrhan, D. & Balandin, A. A. High-temperature quenching of electrical resistance in graphene interconnects. Appl. Phys. Lett. 92, 202108 (2008).

    Article  Google Scholar 

  59. Lu, Y. et al. Wireless and flexible skin moisture and temperature sensor sheets toward the study of thermoregulator center. Adv. Healthc. Mater. 10, 2100103 (2021).

    Article  Google Scholar 

  60. Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19–25 (2015).

    Article  Google Scholar 

  61. Choi, Y. K. et al. CHARMM-GUI Nanomaterial modeler for modeling and simulation of nanomaterial systems. J. Chem. Theory Comput. 18, 479–493 (2022).

    Article  Google Scholar 

  62. Kaminski, G. A., Friesner, R. A., Tirado-Rives, J. & Jorgensen, W. L. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105, 6474–6487 (2001).

    Article  Google Scholar 

  63. Abascal, J. L. F., Sanz, E., Fernández, R. G. & Vega, C. A potential model for the study of ices and amorphous water: TIP4P/ice. J. Chem. Phys. 122, 234511 (2005).

    Article  Google Scholar 

  64. Matsumoto, M., Yagasaki, T. & Tanaka, H. GenIce: hydrogen-disordered ice generator. J. Comput. Chem. 39, 61–64 (2018).

    Article  Google Scholar 

  65. Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    Article  Google Scholar 

  66. Berendsen, H. J. C., Postma, J. P. M., Gunsteren, W. F. V., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    Article  Google Scholar 

  67. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    Article  Google Scholar 

  68. Doherty, B., Zhong, X., Gathiaka, S., Li, B. & Acevedo, O. Revisiting OPLS force field parameters for ionic liquid simulations. J. Chem. Theory Comput. 13, 6131–6145 (2017).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 52105593 (K.X.), 52375031 (G.Y.) and 52233013 (Z.G.)), STI 2030—Major Projects (grant no. 2022ZD0208601) to K.X., the ‘Pioneer’ and ‘Leading Goose’ R&D Program of Zhejiang (grant nos. 2023C01051, 2023C03007) to K.X., National Key R&D Program of China (grant nos. 2018YFA0703000 (H.Y.), 2021YFA0909900 (Z.G.)), the leading innovation and entrepreneurship team project in Zhejiang (grant no. 2022R01001) to K.X., Zhejiang Province ‘Kunpeng Action’ Plan to Z.G. and the Young Elite Scientists Sponsorship Program by CAST (YESS) (grant no. 2022-2024QNRC001) to Y.Z.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. and K.X. conceived the idea and designed the research. G.Y., Z.G., H.Y. and W.H. provided extensive suggestions on experimental design and biological applications. Y.L. carried out the device fabrication, characterizations and demonstrations. S.W., J.Y., T.Y., Y.X., B.L. and X.H. performed the in vitro and in vivo biological assays. Y.J. designed the wearable signal processing and wireless systems. Y.Z., L.H., H.L., D.K., T.L. and X.O. assisted in the experiment or analysed the data. All the authors discussed the results and commented on the manuscript. Y.L., S.W. and K.X. wrote the manuscript.

Corresponding authors

Correspondence to Zhen Gu or Kaichen Xu.

Ethics declarations

Competing interests

Y.L., K.X., G.Y. and H.Y. are the inventors of patent filed for the cryogenic transfer of LIG. Z.G. is the cofounder of Zenomics Inc. and ZCapsule Inc. Z.G. and Y.Z. are the cofounders of μZen Pharma Co., Ltd, and the authors declare no other competing interests.

Peer review

Peer review information

Nature Electronics thanks Seung Hwan Ko, Lili Jiang and Tomas Pinheiro for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–42, Table 1, video captions and references.

Reporting Summary

Supplementary Data

Supplementary data of Figs. 1–42.

Supplementary Video 1

Peeling off the ultrathin nanocomposite after attaching it on the skin for 8 hours.

Supplementary Video 2

Crack propagation process of LIG on the PPH–PDMS composite.

Supplementary Video 3

A Sprague–Dawley rat with normal heartbeat after thoracotomy.

Supplementary Video 4

Sensor arrays on the cardiac surface of rat after ligating the LAD coronary artery.

Supplementary Code

Source code for calculation of ECG signals.

Source data

Source Data Fig. 2

Source data of Fig. 2b–d,h–k.

Source Data Fig. 3

Source data of Fig. 3c,d,f,h,k–n.

Source Data Fig. 4

Source data of Fig. 4c–f,h,j,l.

Source Data Fig. 5

Source data of Fig. 5d–h.

Source Data Fig. 6

Source data of Fig. 6h,I,j,k–n,o.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Yang, G., Wang, S. et al. Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics. Nat Electron 7, 51–65 (2024). https://doi.org/10.1038/s41928-023-01091-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-023-01091-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing