Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuromorphic computing based on halide perovskites

Abstract

Neuromorphic computing requires electronic systems that can perform massively parallel computational tasks with low energy consumption. Such systems have traditionally been based on complementary metal–oxide–semiconductor circuits, but further advances in computational performance will probably require devices that can offer high-order complexity combined with area and energy efficiency. Halide perovskites can handle both ions and electronic charges, and could be used to create adaptive computing systems based on intrinsic device dynamics. The materials also offer exotic switching phenomena, providing opportunities for multimodal systems. Here we explore the development of neuromorphic hardware systems based on halide perovskites. We examine how devices based on these materials can serve as synapses and neurons, and can be used in neuromorphic computing networks. We also consider the challenges involved in developing practical perovskite neuromorphic systems, and highlight how these systems could augment and complement digital circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two-terminal perovskite memristors.
Fig. 2: Ferroelectric gate field-effect synaptic transistor.
Fig. 3: Perovskite ANNs.
Fig. 4: Engineering future perovskite neural networks.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors.

References

  1. Mead, C. Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636 (1990). This paper reports the term ‘neuromorphic’.

    Google Scholar 

  2. Abbott, L. F. & Regehr, W. G. Synaptic computation. Nature 431, 796–803 (2004).

    Google Scholar 

  3. Furber, S. B., Galluppi, F., Temple, S. & Plana, L. A. The SpiNNaker Project. Proc. IEEE 102, 652–665 (2014).

    Google Scholar 

  4. Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A. & Eleftheriou, E. Stochastic phase-change neurons. Nat. Nanotechnol. 11, 693–699 (2016).

    Google Scholar 

  5. Sebastian, A., le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020).

    Google Scholar 

  6. Koelmans, W. et al. Projected phase-change memory devices. Nat. Commun. 6, 8181 (2015).

    Google Scholar 

  7. van de Burgt, Y. et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414–418 (2017).

    Google Scholar 

  8. Rzeszut, P. et al. Multi-state MRAM cells for hardware neuromorphic computing. Sci. Rep. 12, 7178 (2022).

    Google Scholar 

  9. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008). This paper reports the fabrication of a memristor.

    Google Scholar 

  10. Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013).

    Google Scholar 

  11. Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal–oxide memristors. Nature 521, 61–64 (2015).

    Google Scholar 

  12. Danial, L. et al. Two-terminal floating-gate transistors with a low-power memristive operation mode for analogue neuromorphic computing. Nat. Electron. 2, 596–605 (2019).

    Google Scholar 

  13. Sangwan, V. K. & Hersam, M. C. Neuromorphic nanoelectronic materials. Nat. Nanotechnol. 15, 517–528 (2020).

    Google Scholar 

  14. Yi, W. et al. Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nat. Commun. 9, 4661 (2018).

    Google Scholar 

  15. Oh, S. et al. Energy-efficient Mott activation neuron for full-hardware implementation of neural networks. Nat. Nanotechnol. 16, 680–687 (2021).

    Google Scholar 

  16. Boyn, S. et al. Learning through ferroelectric domain dynamics in solid-state synapses. Nat. Commun. 8, 14736 (2017).

    Google Scholar 

  17. Shi, J. et al. A correlated nickelate synaptic transistor. Nat. Commun. 4, 2676 (2013).

    Google Scholar 

  18. Mou, X. et al. Analog memristive synapse based on topotactic phase transition for high-performance neuromorphic computing and neural network pruning. Sci. Adv. 7, eabh0648 (2021).

    Google Scholar 

  19. Zhang, H. T. et al. Perovskite neural trees. Nat. Commun. 11, 2245 (2020).

    Google Scholar 

  20. Ryu, H. & Kim, S. Implementation of a reservoir computing system using the short-term effects of Pt/HfO2/TaOx/TiN memristors with self-rectification. Chaos Solitons Fractals 150, 111223 (2021).

    Google Scholar 

  21. Xu, R. et al. Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV. Nano Lett. 19, 2411–2417 (2019).

    Google Scholar 

  22. Bessonov, A. A. et al. Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 14, 199–204 (2015). This is a paper on printed memristors.

    Google Scholar 

  23. Zhang, F. et al. Electric-field induced structural transition in vertical MoTe2- and Mo1–xWxTe2-based resistive memories. Nat. Mater. 18, 55–61 (2019).

    Google Scholar 

  24. Seo, S. et al. Artificial optic–neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 9, 5106 (2018).

    Google Scholar 

  25. Shi, Y. et al. Electronic synapses made of layered two-dimensional materials. Nat. Electron. 1, 458–465 (2018).

    Google Scholar 

  26. Sharbati, M. T. et al. Low-power, electrochemically tunable graphene synapses for neuromorphic computing. Adv. Mater. 30, 1802353 (2018).

    Google Scholar 

  27. Kireev, D. et al. Metaplastic and energy-efficient biocompatible graphene artificial synaptic transistors for enhanced accuracy neuromorphic computing. Nat. Commun. 13, 4386 (2022).

    Google Scholar 

  28. Abdollahramezani, S. et al. Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency. Nat. Commun. 13, 1696 (2022).

    Google Scholar 

  29. Leydecker, T. et al. Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend. Nat. Nanotechnol. 11, 769–775 (2016).

    Google Scholar 

  30. Lee, C. et al. A reconfigurable binary/ternary logic conversion-in-memory based on drain-aligned floating-gate heterojunction transistors. Nat. Commun. 14, 3757 (2023).

    Google Scholar 

  31. Sarkar, T. et al. An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing. Nat. Electron. 5, 774–783 (2022).

    Google Scholar 

  32. Harikesh, P. C. et al. Ion-tunable antiambipolarity in mixed ion–electron conducting polymers enables biorealistic organic electrochemical neurons. Nat. Mater. 22, 242–248 (2023).

    Google Scholar 

  33. van de Burgt, Y., Melianas, A., Keene, S. T., Malliaras, G. & Salleo, A. Organic electronics for neuromorphic computing. Nat. Electron. 1, 386–397 (2018). This is a review paper about the prospect of organic semiconductors for neuromorphic computing.

    Google Scholar 

  34. Hao, J. et al. Low-energy room-temperature optical switching in mixed-dimensionality nanoscale perovskite heterojunctions. Sci. Adv. 7, eabf1959 (2021).

  35. Raifuku, I. et al. Halide perovskite for low-power consumption neuromorphic devices. EcoMat 3, e12142 (2021).

    Google Scholar 

  36. Hao, D., Yang, Z., Huang, J. L. & Shan, F. K. Recent developments of optoelectronic synaptic devices based on metal halide perovskites. Adv. Funct. Mater. 33, 2211467 (2023).

    Google Scholar 

  37. Hong, X., Liu, X., Liao, L. & Zou, X. Review on metal halide perovskite-based optoelectronic synapses. Photon. Res. 11, 787–807 (2023).

    Google Scholar 

  38. Satapathi, S., Raj, K., Yukta & Afroz, M. A. Halide-perovskite-based memristor devices and their application in neuromorphic computing. Phys. Rev. Appl. 18, 017001 (2022).

    Google Scholar 

  39. Chen, S. & Huang, J. Recent advances in synaptic devices based on halide perovskite. ACS Appl. Electron. Mater. 2, 1815–1825 (2020).

    Google Scholar 

  40. Li, W. et al. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat. Rev. Mater. 2, 16099 (2017). This is a paper on the multifunctional properties of halide perovskites.

    Google Scholar 

  41. Chen, B., Rudd, P. N., Yang, S., Yuan, Y. & Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019). This is a paper on the different types of defect present in halide perovskites.

    Google Scholar 

  42. Tress, W. Metal halide perovskites as mixed electronic−ionic conductors: challenges and opportunities—from hysteresis to memristivity. J. Phys. Chem. Lett. 8, 3106–3114 (2017). This is a paper on the opportunities arising from combined electronic and ionic conductivities in perovskites.

    Google Scholar 

  43. John, R. A. et al. Halide perovskite memristors as flexible and reconfigurable physical unclonable functions. Nat. Commun. 12, 3681 (2021).

    Google Scholar 

  44. Lin, G. et al. An organic−inorganic hybrid perovskite logic gate for better computing. J. Mater. Chem. C 3, 10793–10798 (2015).

    Google Scholar 

  45. Zhou, F. et al. Low-voltage, optoelectronic CH3NH3PbI3-xClx memory with integrated sensing and logic operations. Adv. Funct. Mater. 28, 1800080 (2018).

    Google Scholar 

  46. Abbott, L. F. & Nelson, S. B. Synaptic plasticity: taming the beast. Nat. Neurosci. 3, 1178–1183 (2000).

    Google Scholar 

  47. Ren, Z. Y. et al. Threshold-tunable, spike-rate-dependent plasticity originating from interfacial proton gating for pattern learning and memory. ACS Appl. Mater. Interfaces 12, 7833–7839 (2020).

    Google Scholar 

  48. Fang, Y., Zhai, S., Chu, L. & Zhong, J. Advances in halide perovskite memristor from lead-based to lead-free materials. ACS Appl. Mater. Interfaces 13, 17141–17157 (2021).

    Google Scholar 

  49. Yoo, E. J. et al. Resistive switching behavior in organic–inorganic hybrid CH3NH3PbI3−xClx perovskite for resistive random access memory devices. Adv. Mater. 27, 61706175 (2015). This is a paper on the application of halide perovskites in memory devices.

    Google Scholar 

  50. Xu, W. et al. Organometal halide perovskite artificial synapses. Adv. Mater. 28, 5916–5922 (2016).

    Google Scholar 

  51. Harikesh, P. C. et al. Cubic NaSbS2 as an ionic–electronic coupled semiconductor for switchable photovoltaic and neuromorphic device applications. Adv. Mater. 32, 1906976 (2020).

    Google Scholar 

  52. Zhang, C. et al. Conversion of invisible metal–organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption. Nat. Commun. 8, 1138 (2017).

    Google Scholar 

  53. Kim, S.-I. et al. Dimensionality dependent plasticity in halide perovskite artificial synapses for neuromorphic computing. Adv. Electron. Mater. 5, 1900008 (2019).

    Google Scholar 

  54. Ma, F. et al. Optoelectronic perovskite synapses for neuromorphic computing. Adv. Funct. Mater. 30, 1908901 (2020).

    Google Scholar 

  55. Liu, S. et al. Solution-processed synaptic memristors based on halide perovskite nanocrystals. J. Phys. Chem. Lett. 13, 10994–11000 (2022).

    Google Scholar 

  56. Park, Y. & Lee, J.-S. Metal halide perovskite-based memristors for emerging memory applications. J. Phys. Chem. Lett. 13, 5638–5647 (2022).

    Google Scholar 

  57. Xiao, Z. & Huang, J. Energy‐efficient hybrid perovskite memristors and synaptic devices. Adv. Electron. Mater. 2, 1600100 (2016).

    Google Scholar 

  58. Lee, S. et al. Tailored 2D/3D halide perovskite heterointerface for substantially enhanced endurance in conducting bridge resistive switching memory. ACS Appl. Mater. Interfaces 12, 17039–17045 (2020).

    Google Scholar 

  59. John, R. A. et al. Ionotronic halide perovskite drift‐diffusive synapses for low‐power neuromorphic computation. Adv. Mater. 30, 1805454 (2018).

    Google Scholar 

  60. Tian, H. et al. Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computing. ACS Nano 11, 12247–12256 (2017).

    Google Scholar 

  61. Cai, Y. et al. Van der Waals ferroelectric halide perovskite artificial synapse. Phys. Rev. Appl. 18, 014014 (2022).

    Google Scholar 

  62. John, R. A. et al. Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing. Nat. Commun. 13, 2074 (2022).

    Google Scholar 

  63. Li, Y. et al. Transparent and flexible inorganic perovskite photonic artificial synapses with dual-mode operation. Adv. Funct. Mater. 31, 2008259 (2021).

    Google Scholar 

  64. Lee, K. et al. Retina-inspired structurally tunable synaptic perovskite nanocones. Adv. Funct. Mater. 31, 2105596 (2021).

    Google Scholar 

  65. John, R. A. et al. Ionic–electronic halide perovskite memdiodes enabling neuromorphic computing with a second-order complexity. Sci. Adv. 8, eade0072 (2022).

  66. Zhu, X. & Lu, W. D. Optogenetics-inspired tunable synaptic functions in memristors. ACS Nano 12, 1242–1249 (2018).

    Google Scholar 

  67. Sun, Y. et al. Photoelectric synaptic plasticity realized by 2D perovskite. Adv. Funct. Mater. 29, 1902538 (2019).

    Google Scholar 

  68. Chen, Y., Chu, Y., Wu, X., Ou-Yang, W. & Huang, J. High-performance inorganic perovskite quantum dot–organic semiconductor hybrid phototransistors. Adv. Mater. 29, 1704062 (2017).

    Google Scholar 

  69. Zhu, Q.-B. et al. A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat. Commun. 12, 1798 (2021).

    Google Scholar 

  70. Vijjapu, M. T. et al. A flexible capacitive photoreceptor for the biomimetic retina. Light Sci. Appl. 11, 3 (2022).

    Google Scholar 

  71. Yang, J. et al. A perovskite memristor with large dynamic space for analog-encoded image recognition. ACS Nano 16, 21324–21333 (2022).

    Google Scholar 

  72. Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018).

    Google Scholar 

  73. Si, M. et al. A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2, 580–586 (2019).

    Google Scholar 

  74. Jeong, B., Veith, L., Smolders, T. J. A. M., Wolf, M. J. & Asadi, K. Room-temperature halide perovskite field-effect transistors by ion transport mitigation. Adv. Mater. 33, 2100486 (2021).

    Google Scholar 

  75. Jeong, B., Gkoupidenis, P. & Asadi, K. Solution-processed perovskite field-effect transistor artificial synapses. Adv. Mater. 33, 2104034 (2021).

    Google Scholar 

  76. Wang, Y. et al. Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 30, 1802883 (2018).

    Google Scholar 

  77. Jeon, Y.-R. et al. Photo-synaptic properties of CH3NH3Pb1−xMnxBr2x+1 hybrid perovskite thin film-based artificial synapse. Ceram. Int. 49, 11140–11148 (2023).

    Google Scholar 

  78. Wang, K. et al. Light-stimulated synaptic transistors fabricated by a facile solution process based on inorganic perovskite quantum dots and organic semiconductors. Small 15, 1900010 (2019).

    Google Scholar 

  79. Hao, D., Zhang, J., Dai, S., Zhang, J. & Huang, J. Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system. ACS Appl. Mater. Interfaces 12, 39487–39495 (2020).

    Google Scholar 

  80. Yin, L. et al. Optically stimulated synaptic devices based on the hybrid structure of silicon nanomembrane and perovskite. Nano Lett. 20, 3378–3387 (2020).

    Google Scholar 

  81. Wang, R. et al. Artificial synapses based on lead-free perovskite floating-gate organic field-effect transistors for supervised and unsupervised learning. ACS Appl. Mater. Interfaces 13, 43144–43154 (2021).

    Google Scholar 

  82. Liang, X., Luo, Y., Pei, Y., Wang, M. & Liu, C. Multimode transistors and neural networks based on ion-dynamic capacitance. Nat. Electron. 5, 859–869 (2022).

    Google Scholar 

  83. Roy, K., Jaiswal, A. & Panda, P. Towards spike-based machine intelligence with neuromorphic computing. Nature 575, 607–617 (2019).

    Google Scholar 

  84. Mao, J.-Y. et al. Lead-free monocrystalline perovskite resistive switching device for temporal information processing. Nano Energy 71, 104616 (2020).

    Google Scholar 

  85. Chen, L.-W. et al. Highly uniform all-vacuum-deposited inorganic perovskite artificial synapses for reservoir computing. Adv. Intell. Syst. 3, 2000196 (2021).

    Google Scholar 

  86. Yang, J.-Q. et al. Leaky integrate-and-fire neurons based on perovskite memristor for spiking neural networks. Nano Energy 74, 104828 (2020).

    Google Scholar 

  87. Chen, Q. et al. Switchable perovskite photovoltaic sensors for bioinspired adaptive machine vision. Adv. Intell. Syst. 2, 2000122 (2020).

    Google Scholar 

  88. Hong, S. et al. Sensory adaptation and neuromorphic phototransistors based on CsPb(Br1−xIx)3 perovskite and MoS2 hybrid structure. ACS Nano 14, 9796–9806 (2020).

    Google Scholar 

  89. John, R. A. et al. Diffusive and drift halide perovskite memristive barristors as nociceptive and synaptic emulators for neuromorphic computing. Adv. Mater. 33, 2007851 (2021).

    Google Scholar 

  90. Shao, H. et al. A reconfigurable optoelectronic synaptic transistor with stable Zr–CsPbI3 nanocrystals for visuomorphic computing. Adv. Mater. 35, 2208497 (2023).

    Google Scholar 

  91. Zhou, F. & Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020).

    Google Scholar 

  92. Cassella, E. J. et al. Binary solvent system used to fabricate fully annealing-free perovskite solar cells. Adv. Energy Mater. 13, 2203468 (2023).

    Google Scholar 

  93. Li, N. et al. Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility. Science 373, 561–567 (2021).

    Google Scholar 

  94. Yuan, Q. et al. Thermally stable perovskite solar cells by all-vacuum deposition. ACS Appl. Mater. Interfaces 15, 772–781 (2023).

    Google Scholar 

  95. Choi, J. et al. Organic–inorganic hybrid halide perovskites for memories, transistors, and artificial synapses. Adv. Mater. 30, 1704002 (2018).

    Google Scholar 

  96. Wang, G. et al. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. Sci. Adv. 1, e1500613 (2015).

    Google Scholar 

  97. Zhang, Y. et al. Three-dimensional perovskite nanowire array-based ultrafast resistive RAM with ultralong data retention. Sci. Adv. 7, eabg3788 (2021).

  98. Poddar, S. et al. Down-scalable and ultra-fast memristors with ultra-high density three-dimensional arrays of perovskite quantum wires. Nano Lett. 21, 5036–5044 (2021).

    Google Scholar 

  99. Adam, G. C. et al. Memristor crossbars for analog and neuromorphic computing applications. IEEE Trans. Electron Devices 64, 16576530 (2017).

    Google Scholar 

  100. Tu, S.-K. et al. Room-temperature fabricated multilevel nonvolatile lead-free cesium halide memristors for reconfigurable in-memory computing. ACS Nano 16, 12979–12990 (2022).

    Google Scholar 

  101. Bi, E. et al. Efficient perovskite solar cell modules with high stability enabled by iodide diffusion barriers. Joule 3, 2748–2760 (2019).

    Google Scholar 

  102. Kim, I.-J., Kim, M.-K. & Lee, J.-S. Highly-scaled and fully-integrated 3-dimensional ferroelectric transistor array for hardware implementation of neural networks. Nat. Commun. 14, 504 (2023).

    Google Scholar 

  103. Ince, R., Adanır, S. S. & Sevmez, F. The inventor of electroencephalography (EEG): Hans Berger (1873–1941). Childs Nerv. Syst. 37, 2723–2724 (2021).

    Google Scholar 

  104. Chaudhary, U., Birbaumer, N. & Ramos-Murguialday, A. Brain–computer interfaces for communication and rehabilitation. Nat. Rev. Neurol. 12, 513–525 (2016).

    Google Scholar 

  105. Liu, A. et al. High-performance inorganic metal halide perovskite transistors. Nat. Electron. 5, 78–83 (2022). This paper reports a breakthrough in the field-effect mobility of perovskites.

  106. Zhu, H. et al. High-performance hysteresis-free perovskite transistors through anion engineering. Nat. Commun. 13, 1741 (2022).

    Google Scholar 

  107. Yang, Q. et al. Ecoresorbable and bioresorbable microelectromechanical systems. Nat. Electron. 5, 526–538 (2022).

    Google Scholar 

  108. Han, W. B. et al. Ultra-stretchable and biodegradable elastomers for soft, transient electronics. Nat. Commun. 14, 2263 (2023).

    Google Scholar 

  109. Ma, X. et al. Superior photo-carrier diffusion dynamics in organic–inorganic hybrid perovskites revealed by spatiotemporal conductivity imaging. Nat. Commun. 12, 5009 (2021).

    Google Scholar 

  110. Cai, F. et al. Power-efficient combinatorial optimization using intrinsic noise in memristor Hopfield neural networks. Nat. Electron. 3, 409–418 (2020).

    Google Scholar 

  111. Kumar, S. et al. Dynamical memristors for higher-complexity neuromorphic computing. Nat. Rev. Mater. 7, 575–591 (2022).

    MathSciNet  Google Scholar 

  112. Liu, J. et al. A bioinspired flexible neuromuscular system based thermal-annealing-free perovskite with passivation. Nat. Commun. 13, 7427 (2022).

    Google Scholar 

  113. Biliroglu, M. et al. Room-temperature superfluorescence in hybrid perovskites and its origins. Nat. Photon. 16, 324–329 (2022).

    Google Scholar 

  114. Tamarat, P. et al. The dark exciton ground state promotes photon-pair emission in individual perovskite nanocrystals. Nat. Commun. 11, 6001 (2020).

    Google Scholar 

  115. Feynman, R. P. Simulating physics with computers. Int J. Theor. Phys. 21, 467–488 (1982). This work describes the possibility of using computers emulating natural phenomena.

    MathSciNet  Google Scholar 

  116. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Science and ICT through the National Research Foundation, funded by the Korean Government (NRF-2021R1A2C3005401). The research work presented in this article was partially supported by the European Commission under the Horizon Europe Programme, through funding of the OASEES project (101092702).

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived this work and contributed to the discussion of content. M.V. and A.R.b.M.Y. researched the data and wrote the first draft. M.K.N., R.D., F.G., T.D.A. and Y.-Y.N. revised the manuscript before submission.

Corresponding authors

Correspondence to Maria Vasilopoulou, Abd Rashid bin Mohd Yusoff, Thomas D. Anthopoulos or Yong-Young Noh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Hao-Wu Lin, Wentao Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilopoulou, M., Mohd Yusoff, A.R.b., Chai, Y. et al. Neuromorphic computing based on halide perovskites. Nat Electron 6, 949–962 (2023). https://doi.org/10.1038/s41928-023-01082-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-023-01082-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing