Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Potential and challenges of computing with molecular materials

Abstract

We are at an inflection point in computing where traditional technologies are incapable of keeping up with the demands of exploding data collection and artificial intelligence. This challenge demands a leap to a new platform as transformative as the digital silicon revolution. Over the past 30 years molecular materials for computing have generated great excitement but continually fallen short of performance and reliability requirements. However, recent reports indicate that those historical limitations may have been resolved. Here we assess the current state of computing with molecular-based materials, especially using transition metal complexes of redox active ligands, in the context of neuromorphic computing. We describe two complementary research paths necessary to determine whether molecular materials can be the basis of a new computing technology: continued exploration of the molecular electronic properties that enable computation and, equally important, the process development for on-chip integration of molecular materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Azo-aromatic electron sponge with different electron occupancies.
Fig. 2: Multiple-pathway interactions and mechanisms in molecular films.
Fig. 3: Tailoring molecules for enhanced computing.
Fig. 4: A MIMO accelerator.
Fig. 5: Navigating the scientific and technological path ahead.

Similar content being viewed by others

References

  1. Rotman, D. Molecular computing. MIT Technology Review https://go.nature.com/3OSS3w1 (2000).

  2. Cuevas, J. C. & Scheer, E. Molecular Electronics: An Introduction to Theory and Experiment (World Scientific, 2010).

  3. Carroll, R. L. & Gorman, C. B. The genesis of molecular electronics. Angew. Chem. Int. Ed. 41, 4378–4400 (2002).

    Article  Google Scholar 

  4. Chen, J., Reed, M., Rawlett, A. & Tour, J. Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550–1552 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Hickmott, T. Low‐frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33, 2669–2682 (1962).

    Article  CAS  Google Scholar 

  6. Chopra, K. Current-controlled negative resistance in thin niobium oxide films. Proc. IEEE 51, 941–942 (1963).

    Article  Google Scholar 

  7. Dearnaley, G., Stoneham, A. & Morgan, D. Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 33, 1129 (1970).

    Article  Google Scholar 

  8. Chua, L. Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971).

    Article  Google Scholar 

  9. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Williams, R. S. Summary of the Faraday discussion on new memory paradigms: memristive phenomena and neuromorphic applications. Faraday Discuss. 213, 579–587 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Xiang, D., Wang, X., Jia, C., Lee, T. & Guo, X. Molecular-scale electronics: from concept to function. Chem. Rev. 116, 4318–4440 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, H. & Fraser Stoddart, J. From molecular to supramolecular electronics. Nat. Rev. Mater. 6, 804–828 (2021).

    Article  CAS  Google Scholar 

  13. Collier, C. et al. Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Geffroy, B., Le Roy, P. & Prat, C. Organic light‐emitting diode (OLED) technology: materials, devices and display technologies. Polym. Int. 55, 572–582 (2006).

    Article  CAS  Google Scholar 

  15. Zou, S.-J. et al. Recent advances in organic light-emitting diodes: toward smart lighting and displays. Mater. Chem. Front. 4, 788–820 (2020).

    Article  CAS  Google Scholar 

  16. Williams, R. S. What’s next?[The end of Moore’s law]. Comput. Sci. Eng. 19, 7–13 (2017).

    Article  Google Scholar 

  17. Knight, W. AI can do great things—if it doesn’t burn the planet. Wired Magazine https://go.nature.com/3ORsdbG (2020).

  18. Mehonic, A. & Kenyon, A. J. Brain-inspired computing needs a master plan. Nature 604, 255–260 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Jaeger, H., Noheda, B. & Van Der Wiel, W. G. Toward a formal theory for computing machines made out of whatever physics offers. Nat. Commun. 14, 4911 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Goswami, S., Goswami, S. & Venkatesan, T. An organic approach to low energy memory and brain inspired electronics. Appl. Phys. Rev. 7, 021303 (2020).

    Article  CAS  Google Scholar 

  21. Valov, I. & Kozicki, M. Organic memristors come of age. Nat. Mater. 16, 1170–1172 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Gray, H. B. New structures in transition metal chemistry. Coord. Chem. Rev. 1, 156–163 (1966).

    Article  CAS  Google Scholar 

  23. Jørgensen, C. K. Differences between the four halide ligands, and discussion remarks on trigonal-bipyramidal complexes, on oxidation states, and on diagonal elements of one-electron energy. Coord. Chem. Rev. 1, 164–178 (1966).

    Article  Google Scholar 

  24. Goswami, S., Mukherjee, R. & Chakravorty, A. Chemistry of ruthenium. 12. Reactions of bidentate ligands with diaquabis [2-(arylazo) pyridine] ruthenium (II) cation. Stereoretentive synthesis of tris chelates and their characterization: metal oxidation,ligand reduction, and spectroelectrochemical correlation.Inorg. Chem. 22, 2825–2832 (1983).

    Article  CAS  Google Scholar 

  25. Samanta, S., Ghosh, P. & Goswami, S. Recent advances on the chemistry of transition metal complexes of 2-(arylazo) pyridines and its arylamino derivatives. Dalton Trans. 41, 2213–2226 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Joy, S. et al. Isolation and assessment of the molecular and electronic structures of azo-anion-radical complexes of chromium and molybdenum. Experimental and theoretical characterization of complete electron-transfer series. Inorg. Chem. 50, 9993–10004 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. O’regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

    Article  Google Scholar 

  28. Hamann, T. W., Jensen, R. A., Martinson, A. B., Van Ryswyk, H. & Hupp, J. T. Advancing beyond current generation dye-sensitized solar cells. Energy Environ. Sci. 1, 66–78 (2008).

    Article  CAS  Google Scholar 

  29. Goswami, S. et al. Robust resistive memory devices using solution-processable metal-coordinated azo aromatics. Nat. Mater. 16, 1216–1224 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Zhuo, Y. et al. A dynamical compact model of diffusive and drift memristors for neuromorphic computing. Adv. Electron. Mater. 8, 2100696 (2022).

    Article  CAS  Google Scholar 

  31. Rath, S. P., Thompson, D., Goswami, S. & Goswami, S. Many‐body molecular interactions in a memristor. Adv. Mater. 35, 2204551 (2022).

    Article  Google Scholar 

  32. Goswami, S. et al. Decision trees within a molecular memristor. Nature 597, 51–56 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Paul, N., Samanta, S. & Goswami, S. Redox induced electron transfer in doublet azo-anion diradical rhenium (II) complexes. Characterization of complete electron transfer series. Inorg. Chem. 49, 2649–2655 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Ouellette, R. & Rawn, J. Organic Chemistry 135–165 (Academic Press, 2018).

  35. Bhatt, V. Essentials of Coordination Chemistry: A Simplified Approach with 3D Visuals 63–109 (Academic Press, 2015).

  36. Li, Y. et al. Recent advances in organic‐based materials for resistive memory applications. InfoMat 2, 995–1033 (2020).

    Article  CAS  Google Scholar 

  37. Goswami, S. et al. Charge disproportionate molecular redox for discrete memristive and memcapacitive switching. Nat. Nanotechnol. 15, 380–389 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Yi, S. I. et al. Energy and space efficient parallel adder using molecular memristors. Adv. Mater. 35, 2206128 (2022).

    Article  Google Scholar 

  39. Shao, J.-Y., Cui, B.-B., Tang, J.-H. & Zhong, Y.-W. Resistive memory switching of transition-metal complexes controlled by ligand design. Coord. Chem. Rev. 393, 21–36 (2019).

    Article  CAS  Google Scholar 

  40. Zhou, P. K. et al. Recent advances in covalent organic polymers‐based thin films as memory devices. J. Polymer Sci. https://doi.org/10.1002/pol.20230273 (2023).

  41. Cho, B., Song, S., Ji, Y., Kim, T. W. & Lee, T. Organic resistive memory devices: performance enhancement, integration, and advanced architectures. Adv. Funct. Mater. 21, 2806–2829 (2011).

    Article  CAS  Google Scholar 

  42. Lapham, P., Vilà-Nadal, L., Cronin, L. & Georgiev, V. P. Influence of the contact geometry and counterions on the current flow and charge transfer in polyoxometalate molecular junctions: a density functional theory study. J. Phys. Chem. C 125, 3599–3610 (2021).

    Article  CAS  Google Scholar 

  43. Mainzer, K. in Chaos, CNN, Memristors and Beyond: A Festschrift for Leon Chua (eds Adamatzky, A. &Chen, G.) 146–159 (World Scientific, 2013).

  44. Guerin, S. et al. Control of piezoelectricity in amino acids by supramolecular packing. Nat. Mater. 17, 180–186 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Petit, L., Maldivi, P. & Adamo, C. Predictions of optical excitations in transition-metal complexes with time dependent-density functional theory: influence of basis sets. J. Chem. Theory Comput. 1, 953–962 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Singh, V. et al. Precursor to gas sensor: a detailed study of the suitability of copper complexes as an MOCVD precursor and their application in gas sensing. Inorg. Chem. 60, 17141–17150 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Kettle, S. F. A. Physical Inorganic Chemistry: A Coordination Chemistry Approach 185–210 (University Science Books, 1996).

  48. Wan, T. et al. In‐sensor computing: materials, devices, and integration technologies. Adv. Mater. 35, 2203830 (2022).

    Article  Google Scholar 

  49. Pastur-Romay, L. A., Cedrón, F., Pazos, A. & Porto-Pazos, A. B. Deep artificial neural networks and neuromorphic chips for big data analysis: pharmaceutical and bioinformatics applications. Int. J. Mol. Sci. 17, 1313 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang, L. & Humphrey, M. G. Multiphoton absorption at metal alkynyl complexes. Coord. Chem. Rev. 473, 214820 (2022).

    Article  CAS  Google Scholar 

  51. Lokhande, P. et al. The progress and roadmap of metal–organic frameworks for high-performance supercapacitors. Coord. Chem. Rev. 473, 214771 (2022).

    Article  CAS  Google Scholar 

  52. Hu, M. et al. Memristor‐based analog computation and neural network classification with a dot product engine. Adv. Mater. 30, 1705914 (2018).

    Article  Google Scholar 

  53. Xiao, T. P., Bennett, C. H., Feinberg, B., Agarwal, S. & Marinella, M. J. Analog architectures for neural network acceleration based on non-volatile memory. Appl. Phys. Rev. 7, 031301 (2020).

    Article  CAS  Google Scholar 

  54. Csaba, G. & Porod, W. Coupled oscillators for computing: a review and perspective. Appl. Phys. Rev. 7, 011302 (2020).

    Article  CAS  Google Scholar 

  55. Ledoux, E. & Brunel, N. Dynamics of networks of excitatory and inhibitory neurons in response to time-dependent inputs. Front. Comput. Neurosci. 5, 25 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M. & Deisseroth, K. Optogenetics in neural systems. Neuron 71, 9–34 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Yuan, S. et al. Geometric deep optical sensing. Science 379, eade1220 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Christensen, D. V. et al. 2022 roadmap on neuromorphic computing and engineering. Neuromorph. Comput. Eng. 2, 022501 (2022).

    Article  Google Scholar 

  59. Li, C. et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1, 52–59 (2018).

    Article  Google Scholar 

  60. Lanza, M. et al. Memristive technologies for data storage, computation, encryption, and radio-frequency communication. Science 376, eabj9979 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, Z. et al. Resistive switching materials for information processing. Nat. Rev. Mater. 5, 173–195 (2020).

    Article  CAS  Google Scholar 

  62. Hu, M., Strachan, J. P., Li, Z. & Williams R. S. Crossbar arrays for calculating matrix multiplication. US Patent 10,497,440 B2 (2019).

  63. Hu, M., Strachan, J. P., Li, Z. & Williams, R. S. Linear transformation accelerators. US Patent 10,529,418 B2 (2020).

  64. Ascoli, A. et al. On local activity and edge of chaos in a NaMLab memristor. Front. Neurosci. 15, 651452 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nat. Rev. Mater. 7, 575–591 (2022).

    Article  Google Scholar 

  66. Yi, W. et al. Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nat. Commun. 9, 4661 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Terenzio, M., Schiavo, G. & Fainzilber, M. Compartmentalized signaling in neurons: from cell biology to neuroscience. Neuron 96, 667–679 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Alberts, B. et al. Molecular Biology of the Cell 4th edn, Ch. 11 (Garland Science, 2002).

  69. van Reenen, S., Kemerink, M. & Snaith, H. J. Modeling anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 6, 3808–3814 (2015).

    Article  PubMed  Google Scholar 

  70. Harikesh, P. C. et al. Ion-tunable antiambipolarity in mixed ion–electron conducting polymers enables biorealistic organic electrochemical neurons. Nat. Mater. 22, 242–248 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sarkar, T. et al. An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing. Nat. Electron. 5, 774–783 (2022).

    Article  Google Scholar 

  72. Burke, K. Perspective on density functional theory. J. Chem. Phys. 136, 150901 (2012).

    Article  PubMed  Google Scholar 

  73. Kumar, N., Mignuzzi, S., Su, W. & Roy, D. Tip-enhanced Raman spectroscopy: principles and applications. EPJ Tech. Instrum. 2, 1–23 (2015).

    Article  Google Scholar 

  74. Collins, B. A. & Ade, H. Quantitative compositional analysis of organic thin films using transmission NEXAFS spectroscopy in an X-ray microscope. J. Electron. Spectrosc. Relat. Phenom. 185, 119–128 (2012).

    Article  CAS  Google Scholar 

  75. Watts, B. & Ade, H. NEXAFS imaging of synthetic organic materials. Mater. Today 15, 148–157 (2012).

    Article  CAS  Google Scholar 

  76. Brown, T. D., Kumar, S. & Williams, R. S. Physics-based compact modeling of electro-thermal memristors: negative differential resistance, local activity, and non-local dynamical bifurcations. Appl. Phys. Rev. 9, 011308 (2022).

    Article  CAS  Google Scholar 

  77. Gergel-Hackett, N., Zangmeister, C. D., Hacker, C. A., Richter, L. J. & Richter, C. A. Demonstration of molecular assembly on Si (100) for CMOS-compatible molecule-based electronic devices. J. Am. Chem. Soc. 130, 4259–4261 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Skomski, D., Abb, S. & Tait, S. L. Robust surface nano-architecture by alkali–carboxylate ionic bonding. J. Am. Chem. Soc. 134, 14165–14171 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Wu, B. & Kumar, A. Extreme ultraviolet lithography and three dimensional integrated circuit—a review. Appl. Phys. Rev. 1, 011104 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

Sreetosh Goswami and Sreebrata Goswami thank CeNSE facilities for their support, which is funded by the Ministry of Human Resource Development (MHRD), Ministry of Electronics and Information Technology (MeitY) and Department of Science and Technology (DST). Sreetosh Goswami also acknowledges support from an IISc start-up grant, a Pratiksha Trust Grant and SERB core research grant number CRG/2022/001998. R.S.W. is supported by the Center for Reconfigurable Electronic Materials Inspired by Nonlinear Neuron Dynamics (reMIND), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences at the under award number DE-SC0023353. We thank D. Thompson for helping with several molecular illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreetosh Goswami.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, R.S., Goswami, S. & Goswami, S. Potential and challenges of computing with molecular materials. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01820-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01820-4

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics