Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How is Big Data reshaping preclinical aging research?

Abstract

The exponential scientific and technological progress during the past 30 years has favored the comprehensive characterization of aging processes with their multivariate nature, leading to the advent of Big Data in preclinical aging research. Spanning from molecular omics to organism-level deep phenotyping, Big Data demands large computational resources for storage and analysis, as well as new analytical tools and conceptual frameworks to gain novel insights leading to discovery. Systems biology has emerged as a paradigm that utilizes Big Data to gain insightful information enabling a better understanding of living organisms, visualized as multilayered networks of interacting molecules, cells, tissues and organs at different spatiotemporal scales. In this framework, where aging, health and disease represent emergent states from an evolving dynamic complex system, context given by, for example, strain, sex and feeding times, becomes paramount for defining the biological trajectory of an organism. Using bioinformatics and artificial intelligence, the systems biology approach is leading to remarkable advances in our understanding of the underlying mechanism of aging biology and assisting in creative experimental study designs in animal models. Future in-depth knowledge acquisition will depend on the ability to fully integrate information from different spatiotemporal scales in organisms, which will probably require the adoption of theories and methods from the field of complex systems. Here we review state-of-the-art approaches in preclinical research, with a focus on rodent models, that are leading to conceptual and/or technical advances in leveraging Big Data to understand basic aging biology and its full translational potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Major driving forces underlying BD in preclinical aging research.
Fig. 2: Organism-level deep phenotyping.
Fig. 3: Common computer vision tasks as applied to preclinical aging research.
Fig. 4: Multilayered interactive network perspective visualization of living organisms as dynamic complex systems for understanding the spatiotemporal emergence of aging.
Fig. 5: Horizontal and vertical integration of omics layers.

Similar content being viewed by others

References

  1. Cohen, A. A. Complex systems dynamics in aging: new evidence, continuing questions. Biogerontology 17, 205–220 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Cohen, A. A. et al. A complex systems approach to aging biology. Nat. Aging 2, 580–591 (2022).

    Article  PubMed  Google Scholar 

  3. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhavoronkov, A. et al. Artificial intelligence for aging and longevity research: recent advances and perspectives. Ageing Res. Rev. 49, 49–66 (2019).

    Article  PubMed  Google Scholar 

  5. Roser, M., Ritchie, H. & Mathieu, E. Technological change. Our World in Data https://ourworldindata.org/technological-change (2013).

  6. Campisi, J. et al. From discoveries in ageing research to therapeutics for healthy ageing. Nature 571, 183–192 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gauthier, J., Vincent, A. T., Charette, S. J. & Derome, N. A brief history of bioinformatics. Brief. Bioinform. 20, 1981–1996 (2019).

    Article  PubMed  Google Scholar 

  8. Barabasi, A.-L. Network Science (Cambridge Univ. Press, 2016).

  9. Avchaciov, K. et al. Unsupervised learning of aging principles from longitudinal data. Nat. Commun. 13, 6529 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu, X., Hu, J., Lyu, X., Huang, H. & Cheng, X. Exploring the interdisciplinary nature of precision medicine: network analysis and visualization. JMIR Med. Inform. 9, e23562 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sejnowski, T. J. The Deep Learning Revolution (The MIT Press, 2018).

  12. Goh, W. W. B. & Wong, L. The birth of bio-data science: trends, expectations, and applications. Genomics Proteomics Bioinform. 18, 5–15 (2020).

    Article  Google Scholar 

  13. Yang, J. H. et al. Loss of epigenetic information as a cause of mammalian aging. Cell 186, 305–326 e327 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Brunet, A., Goodell, M. A. & Rando, T. A. Ageing and rejuvenation of tissue stem cells and their niches. Nat. Rev. Mol. Cell Biol. 24, 45–62 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Acosta-Rodríguez, V. et al. Circadian alignment of early onset caloric restriction promotes longevity in male C57BL/6J mice. Science 376, 1192–1202 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Petr, M. A. et al. A cross-sectional study of functional and metabolic changes during aging through the lifespan in male mice. eLife 10, e62952 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ristevski, B. & Chen, M. Big Data analytics in medicine and healthcare. J. Integr. Bioinform. 15, 20170030 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Meijering, E. A bird’s-eye view of deep learning in bioimage analysis. Comput. Struct. Biotechnol. J. 18, 2312–2325 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Voulodimos, A., Doulamis, N., Doulamis, A. & Protopapadakis, E. Deep learning for computer vision: a brief review. Comput. Intell. Neurosci. 2018, 7068349 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Suzuki, K. Overview of deep learning in medical imaging. Radiol. Phys. Technol. 10, 257–273 (2017).

    Article  PubMed  Google Scholar 

  21. Bermudez Contreras, E., Sutherland, R. J., Mohajerani, M. H. & Whishaw, I. Q. Challenges of a small world analysis for the continuous monitoring of behavior in mice. Neurosci. Biobehav. Rev. 136, 104621 (2022).

    Article  PubMed  Google Scholar 

  22. von Ziegler, L., Sturman, O. & Bohacek, J. Big behavior: challenges and opportunities in a new era of deep behavior profiling. Neuropsychopharmacology 46, 33–44 (2021).

    Article  Google Scholar 

  23. Voikar, V. & Gaburro, S. Three pillars of automated home-cage phenotyping of mice: novel findings, refinement, and reproducibility based on literature and experience. Front. Behav. Neurosci. 14, 575434 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Perez-Riverol, Y. et al. Quantifying the impact of public omics data. Nat. Commun. 10, 3512 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dato, S., Crocco, P., Rambaldi Migliore, N. & Lescai, F. Omics in a digital world: the role of bioinformatics in providing new insights into human aging. Front. Genet. 12, 689824 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Paigen, K. & Eppig, J. T. A mouse phenome project. Mamm. Genome 11, 715–717 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haug, K. et al. MetaboLights: a resource evolving in response to the needs of its scientific community. Nucleic Acids Res 48, D440–D444 (2020).

    CAS  PubMed  Google Scholar 

  29. Sud, M. et al. Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res. 44, D463–470 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Harris, P. A. et al. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biom. Inform. 42, 377–381 (2009).

    Article  Google Scholar 

  31. Kahn, M. G., Eliason, B. B. & Bathurst, J. Quantifying clinical data quality using relative gold standards. AMIA Annu. Symp. Proc. 2010, 356–360 (2010).

    PubMed  PubMed Central  Google Scholar 

  32. Tomczak, K., Czerwińska, P. & Wiznerowicz, M. Review The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. 2015, 68–77 (2015).

    Google Scholar 

  33. Clough, E. & Barrett, T. The Gene Expression Omnibus database. Methods Mol. Biol. 1418, 93–110 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Boussadi, A. & Zapletal, E. A. Fast Healthcare Interoperability Resources (FHIR) layer implemented over i2b2. BMC Med. Inform. Decis. Mak. 17, 120 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Xia, J., Psychogios, N., Young, N. & Wishart, D. S. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 37, W652–W660 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao, K. & Rhee, S. Y. Interpreting omics data with pathway enrichment analysis. Trends. Genet. https://doi.org/10.1016/j.tig.2023.01.003 (2023).

    Article  PubMed  Google Scholar 

  38. Miller, R. A. et al. An aging Interventions Testing Program: study design and interim report. Aging Cell 6, 565–575 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Macchiarini, F., Miller, R. A., Strong, R., Rosenthal, N. & Harrison, D. E. in Handbook of the Biology of Aging (eds Musi, N. & Hornsby, P. J.) 219–235 (Academic Press, 2021).

  40. Brown, S. D. M. & Moore, M. W. Towards an encyclopaedia of mammalian gene function: the International Mouse Phenotyping Consortium. Dis. Model Mech. 5, 289–292 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Groza, T. et al. The International Mouse Phenotyping Consortium: comprehensive knockout phenotyping underpinning the study of human disease. Nucleic Acids Res. 51, D1038–D1045 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Churchill, G. A., Gatti, D. M., Munger, S. C. & Svenson, K. L. The Diversity Outbred mouse population. Mamm. Genome 23, 713–718 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lee, P. J. et al. NIH SenNet Consortium to map senescent cells throughout the human lifespan to understand physiological health. Nat. Aging 2, 1090–1100 (2022).

    Article  Google Scholar 

  44. Brown, S. D. M. et al. High-throughput mouse phenomics for characterizing mammalian gene function. Nat. Rev. Genet. 19, 357–370 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Palliyaguru, D. L. et al. Study of longitudinal aging in mice: presentation of experimental techniques. J. Gerontol. A 76, 552–560 (2021).

    Article  Google Scholar 

  46. Successful Trajectories of Aging: Reserve and Resilience in RatS (STARRRS). National Institutes of Health https://www.nia.nih.gov/research/labs/about-irp/successful-trajectories-of-aging-reserve-and-resilience-in-rats#About (2022).

  47. Evans, D. S. et al. Longitudinal functional study of murine aging: a resource for future study designs. JBMR Plus 5, e10466 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kuo, P. L. et al. Longitudinal phenotypic aging metrics in the Baltimore Longitudinal Study of Aging. Nat. Aging 2, 635–643 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Smith, D. L. Jr. et al. Weight cycling increases longevity compared with sustained obesity in mice. Obesity 26, 1733–1739 (2018).

    Article  PubMed  Google Scholar 

  50. Ahadi, S. et al. Personal aging markers and ageotypes revealed by deep longitudinal profiling. Nat. Med. 26, 83–90 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alfaras, I. et al. Empirical versus theoretical power and type I error (false-positive) rates estimated from real murine aging research data. Cell Rep. 36, 109560 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kitano, H. Foundations of Systems Biology (The MIT Press, 2001).

  53. Barabasi, A. L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Lorusso, J. S., Sviderskiy, O. A. & Labunskyy, V. M. Emerging omics approaches in aging research. Antioxid. Redox Signal 29, 985–1002 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Wright, K. M. et al. Age and diet shape the genetic architecture of body weight in diversity outbred mice. eLife 11, e64329 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dholaniya, P. S., Ghosh, S., Surampudi, B. R. & Kondapi, A. K. A knowledge driven supervised learning approach to identify gene network of differentially up-regulated genes during neuronal senescence in Rattus norvegicus. Biosystems 135, 9–14 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Wood, S. H., Craig, T., Li, Y., Merry, B. & de Magalhaes, J. P. Whole transcriptome sequencing of the aging rat brain reveals dynamic RNA changes in the dark matter of the genome. Age 35, 763–776 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. de Magalhaes, J. P., Curado, J. & Church, G. M. Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics 25, 875–881 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Li, N., Bates, D. J., An, J., Terry, D. A. & Wang, E. Up-regulation of key microRNAs, and inverse down-regulation of their predicted oxidative phosphorylation target genes, during aging in mouse brain. Neurobiol. Aging 32, 944–955 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Maes, O. C., An, J., Sarojini, H. & Wang, E. Murine microRNAs implicated in liver functions and aging process. Mech. Ageing Dev. 129, 534–541 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Khanna, A., Muthusamy, S., Liang, R., Sarojini, H. & Wang, E. Gain of survival signaling by down-regulation of three key miRNAs in brain of calorie-restricted mice. Aging 3, 223–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Walther, D. M. & Mann, M. Accurate quantification of more than 4000 mouse tissue proteins reveals minimal proteome changes during aging. Mol. Cell Proteomics 10, M110 004523 (2011).

    Article  PubMed  Google Scholar 

  64. Houtkooper, R. H. et al. The metabolic footprint of aging in mice. Sci. Rep. 1, 134 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tomas-Loba, A., Bernardes de Jesus, B., Mato, J. M. & Blasco, M. A. A metabolic signature predicts biological age in mice. Aging Cell 12, 93–101 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Rappley, I. et al. Lipidomic profiling in mouse brain reveals differences between ages and genders, with smaller changes associated with alpha-synuclein genotype. J. Neurochem. 111, 15–25 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pak, H. H. et al. Fasting drives the metabolic, molecular and geroprotective effects of a calorie-restricted diet in mice. Nat. Metab. 3, 1327–1341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chondronasiou, D. et al. Multi-omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming. Aging Cell 21, e13578 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Aon, M. A. et al. Untangling determinants of enhanced health and lifespan through a multi-omics approach in mice. Cell Metab. 32, 100–116.e104 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bernier, M. et al. Age-dependent impact of two exercise training regimens on genomic and metabolic remodeling in skeletal muscle and liver of male mice. NPJ Aging 8, 8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mitchell, S. J. et al. Daily fasting improves health and survival in male mice independent of diet composition and calories. Cell Metab. 29, 221–228.e223 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Benayoun, B. A. et al. Remodeling of epigenome and transcriptome landscapes with aging in mice reveals widespread induction of inflammatory responses. Genome Res. 29, 697–709 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ori, A. et al. Integrated transcriptome and proteome analyses reveal organ-specific proteome deterioration in old rats. Cell Syst. 1, 224–237 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Williams, E. G. et al. Multiomic profiling of the liver across diets and age in a diverse mouse population. Cell Syst. 13, 43–57.e46 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Sato, S. et al. Circadian reprogramming in the liver identifies metabolic pathways of aging. Cell 170, 664–677.e611 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schaum, N. et al. Ageing hallmarks exhibit organ-specific temporal signatures. Nature 583, 596–602 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shavlakadze, T. et al. Age-related gene expression signature in rats demonstrate early, late, and linear transcriptional changes from multiple tissues. Cell Rep. 28, 3263–3273.e3263 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Nie, C. et al. Distinct biological ages of organs and systems identified from a multi-omics study. Cell Rep. 38, 110459 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Xie, K. et al. Deep phenotyping and lifetime trajectories reveal limited effects of longevity regulators on the aging process in C57BL/6J mice. Nat. Commun. 13, 6830 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ke, S. et al. Gut microbiota predicts healthy late-life aging in male mice. Nutrients 13, 3290 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Luo, D. et al. Gut microbiota combined with metabolomics reveals the metabolic profile of the normal aging process and the anti-aging effect of FuFang Zhenshu TiaoZhi(FTZ) in mice. Biomed. Pharmacother. 121, 109550 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Lee, B. P. et al. Changes in the expression of splicing factor transcripts and variations in alternative splicing are associated with lifespan in mice and humans. Aging Cell 15, 903–913 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bou Sleiman, M. et al. Sex- and age-dependent genetics of longevity in a heterogeneous mouse population. Science 377, eabo3191 (2022).

    Article  PubMed  Google Scholar 

  84. Zhang, M. J., Pisco, A. O., Darmanis, S. & Zou, J. Mouse aging cell atlas analysis reveals global and cell type-specific aging signatures. eLife 10, e62293 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Palmer, D., Fabris, F., Doherty, A., Freitas, A. A. & de Magalhães, J. P. Ageing transcriptome meta-analysis reveals similarities and differences between key mammalian tissues. Aging 13, 3313–3341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ma, S. et al. Organization of the mammalian metabolome according to organ function, lineage specialization, and longevity. Cell Metab. 22, 332–343 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. He, X., Memczak, S., Qu, J., Belmonte, J. C. I. & Liu, G.-H. Single-cell omics in ageing: a young and growing field. Nat. Metab. 2, 293–302 (2020).

    Article  PubMed  Google Scholar 

  88. Matteini, F., Mulaw, M. A. & Florian, M. C. Aging of the hematopoietic stem cell niche: new tools to answer an old question. Front. Immunol. 12, 738204 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Burlingame, E. A. et al. Toward reproducible, scalable, and robust data analysis across multiplex tissue imaging platforms. Cell Rep. Methods 1, 100053 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Amin, M. R., Yurovsky, A., Tian, Y. & Skiena, S. in Proc. 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics 254–259 (Association for Computing Machinery).

  91. Kelley, D. R., Snoek, J. & Rinn, J. L. Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res. 26, 990–999 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Asakura, T., Date, Y. & Kikuchi, J. Application of ensemble deep neural network to metabolomics studies. Anal. Chim. Acta 1037, 230–236 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Li, R., Li, L., Xu, Y. & Yang, J. Machine learning meets omics: applications and perspectives. Brief. Bioinform. 23, bbab460 (2022).

    Article  PubMed  Google Scholar 

  94. Marino, N. et al. Towards AI-driven longevity research: an overview. Front. Aging 4, 1057204 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Allen, W. E., Blosser, T. R., Sullivan, Z. A., Dulac, C. & Zhuang, X. Molecular and spatial signatures of mouse brain aging at single-cell resolution. Cell 186, 194–208.e118 (2023).

    Article  CAS  PubMed  Google Scholar 

  96. Bredikhin, D., Kats, I. & Stegle, O. MUON: multimodal omics analysis framework. Genome Biol. 23, 42 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Koehler Leman, J. et al. Ensuring scientific reproducibility in bio-macromolecular modeling via extensive, automated benchmarks. Nat. Commun. 12, 6947 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wratten, L., Wilm, A. & Goke, J. Reproducible, scalable, and shareable analysis pipelines with bioinformatics workflow managers. Nat. Methods 18, 1161–1168 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Bellantuono, I. et al. A toolbox for the longitudinal assessment of healthspan in aging mice. Nat. Protoc. 15, 540–574 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen, Z. et al. Automated, high-dimensional evaluation of physiological aging and resilience in outbred mice. eLife 11, e72664 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kempermann, G. et al. The individuality paradigm: automated longitudinal activity tracking of large cohorts of genetically identical mice in an enriched environment. Neurobiol. Dis. 175, 105916 (2022).

    Article  PubMed  Google Scholar 

  102. Acosta-Rodriguez, V. A., de Groot, M. H. M., Rijo-Ferreira, F., Green, C. B. & Takahashi, J. S. Mice under caloric restriction self-impose a temporal restriction of food intake as revealed by an automated feeder system. Cell Metab. 26, 267–277.e262 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Niemeyer, J. E. Telemetry for small animal physiology. Lab Anim. 45, 255–257 (2016).

    Article  Google Scholar 

  104. Li, J. Y., Kuo, T. B. J. & Yang, C. C. H. Behaviour consistency is a sensitive tool for distinguishing the effects of aging on physical activity. Behav. Brain Res. 389, 112619 (2020).

    Article  PubMed  Google Scholar 

  105. Gill, S. & Panda, S. A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metab. 22, 789–798 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yang, C. C. & Hsu, Y. L. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 10, 7772–7788 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Le Goallec, A. et al. Machine learning approaches to predict age from accelerometer records of physical activity at biobank scale. PLoS Digit. Health 2, e0000176 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Manero, A. et al. Improving disease prevention, diagnosis, and treatment using novel bionic technologies. Bioeng. Transl. Med. 8, e10359 (2023).

    Article  CAS  PubMed  Google Scholar 

  109. Alanazi, M. A. et al. Towards a low-cost solution for gait analysis using millimeter wave sensor and machine learning. Sensors 22, 5470 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Chakraborty, S., Aich, S., Joo, M. I., Sain, M. & Kim, H. C. A multichannel convolutional neural network architecture for the detection of the state of mind using physiological signals from wearable devices. J. Healthc. Eng. 2019, 5397814 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Zhang, W. B. & Pincus, Z. Predicting all-cause mortality from basic physiology in the Framingham Heart Study. Aging Cell 15, 39–48 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. de Rezende, L. M. T. et al. Core temperature circadian rhythm across aging in spontaneously hypertensive rats. J. Therm. Biol. 97, 102807 (2021).

    Article  PubMed  Google Scholar 

  113. Axsom, J. E. et al. Acclimation to a thermoneutral environment abolishes age-associated alterations in heart rate and heart rate variability in conscious, unrestrained mice. GeroScience 42, 217–232 (2020).

    Article  PubMed  Google Scholar 

  114. Basso, A. et al. Circadian rhythms of body temperature and locomotor activity in aging BALB/c mice: early and late life span predictors. Biogerontology 17, 703–714 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Morrone, C. D., Tsang, A. A., Giorshev, S. M., Craig, E. E. & Yu, W. H. Concurrent behavioral and electrophysiological longitudinal recordings for in vivo assessment of aging. Front. Aging Neurosci. 14, 952101 (2022).

    Article  PubMed  Google Scholar 

  116. Raghunathan, S. et al. The design and hardware implementation of a low-power real-time seizure detection algorithm. J. Neural Eng. 6, 056005 (2009).

    Article  PubMed  Google Scholar 

  117. Martin-Montalvo, A. et al. Metformin improves healthspan and lifespan in mice. Nat. Commun. 4, 2192 (2013).

    Article  PubMed  Google Scholar 

  118. Martinez, P. et al. RAP1 protects from obesity through its extratelomeric role regulating gene expression. Cell Rep. 3, 2059–2074 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Arriola Apelo, S. I., Pumper, C. P., Baar, E. L., Cummings, N. E. & Lamming, D. W. Intermittent administration of rapamycin extends the life span of female C57BL/6J mice. J. Gerontol. A 71, 876–881 (2016).

    Article  Google Scholar 

  120. Mercken, E. M. et al. SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass. Aging Cell 13, 787–796 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Flesia, A. G., Nieto, P. S., Aon, M. A. & Kembro, J. M. in Computational Systems Biology in Medicine and Biotechnology: Methods and Protocols Vol. 2399 (eds Cortassa, S. & Aon, M. A.) 277–341 (Springer, 2022).

  122. Baran, S. W. et al. Digital biomarkers enable automated, longitudinal monitoring in a mouse model of aging. J. Gerontol. A 76, 1206–1213 (2021).

    Article  Google Scholar 

  123. Baran, S. W. et al. Emerging role of translational digital biomarkers within home cage monitoring technologies in preclinical drug discovery and development. Front. Behav. Neurosci. 15, 758274 (2021).

    Article  PubMed  Google Scholar 

  124. Bellman, R. E. Dynamic Programming (Dover Publications, 2003).

  125. Di Germanio, C., Di Francesco, A., Bernier, M. & de Cabo, R. Yo-Yo dieting is better than none. Obesity 26, 1673–1673 (2018).

    Article  PubMed  Google Scholar 

  126. Mitchell, S. J. et al. Effects of sex, strain, and energy intake on hallmarks of aging in mice. Cell Metab. 23, 1093–1112 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Nelson, P. G., Promislow, D. E. L. & Masel, J. Biomarkers for aging identified in cross-sectional studies tend to be non-causative. J. Gerontol. A 75, 466–472 (2020).

    Article  Google Scholar 

  128. Prince, S. J. D. Computer Vision: Models, Learning, and Inference (Cambridge Univ. Press, 2012).

  129. Dall’Ara, E. et al. Longitudinal imaging of the ageing mouse. Mech. Ageing Dev. 160, 93–116 (2016).

    Article  PubMed  Google Scholar 

  130. Balasubramani, V. et al. Roadmap on digital holography-based quantitative phase imaging. J. Imaging 7, 252 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Li, H. S. Genetic influences on susceptibility of the auditory system to aging and environmental factors. Scand. Audiol. Suppl. 36, 1–39 (1992).

    CAS  PubMed  Google Scholar 

  132. Rosas, H. D., Feigin, A. S. & Hersch, S. M. Using advances in neuroimaging to detect, understand, and monitor disease progression in Huntington’s disease. NeuroRx 1, 263–272 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. McConville, P., Moody, J. B. & Moffat, B. A. High-throughput magnetic resonance imaging in mice for phenotyping and therapeutic evaluation. Curr. Opin. Chem. Biol. 9, 413–420 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Minoshima, S. & Cross, D. In vivo imaging of axonal transport using MRI: aging and Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging 35, S89–92 (2008).

    Article  PubMed  Google Scholar 

  135. Mori, T. et al. Molecular imaging of dementia. Psychogeriatrics 12, 106–114 (2012).

    Article  PubMed  Google Scholar 

  136. Cao, L. et al. Positron emission tomography in animal models of tauopathies. Front. Aging Neurosci. 13, 761913 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Nagata, T. Macromolecular synthesis in the livers of aging mice as revealed by electron microscopic radioautography. Prog. Histochem. Cytochem. 45, 1–79 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Wassan, J. T., Zheng, H. & Wang, H. Role of deep learning in predicting aging-related diseases: a scoping review. Cells 10, 2924 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Liu, X., Song, L., Liu, S. & Zhang, Y. A review of deep-learning-based medical image segmentation methods. Sustainability 13, 1224 (2021).

    Article  Google Scholar 

  140. Park, J. H., Seo, E., Choi, W. & Lee, S. J. Ultrasound deep learning for monitoring of flow-vessel dynamics in murine carotid artery. Ultrasonics 120, 106636 (2022).

    Article  PubMed  Google Scholar 

  141. Guimaraes, P. et al. Retinal aging in 3x Tg-AD mice model of Alzheimer’s disease. Front. Aging Neurosci. 14, 832195 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Haft-Javaherian, M. et al. Deep convolutional neural networks for segmenting 3D in vivo multiphoton images of vasculature in Alzheimer disease mouse models. PLoS ONE 14, e0213539 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Jo, T., Nho, K. & Saykin, A. J. Deep learning in Alzheimer’s disease: diagnostic classification and prognostic prediction using neuroimaging data. Front. Aging Neurosci. 11, 220 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Seo, S. Y. et al. Unified deep learning-based mouse brain MR segmentation: template-based individual brain positron emission tomography volumes-of-interest generation without spatial normalization in mouse Alzheimer model. Front. Aging Neurosci. 14, 807903 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Choi, S. et al. Automated characterisation of microglia in ageing mice using image processing and supervised machine learning algorithms. Sci. Rep. 12, 1806 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tan, X., Su, A. T., Hajiabadi, H., Tran, M. & Nguyen, Q. Applying machine learning for integration of multi-modal genomics data and imaging data to quantify heterogeneity in tumour tissues. Methods Mol. Biol. 2190, 209–228 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Wang, Y. et al. Classification of mice hepatic granuloma microscopic images based on a deep convolutional neural network. Appl. Soft Comput. 74, 40–50 (2019).

    Article  Google Scholar 

  148. Melgoza, I. P. et al. Development of a standardized histopathology scoring system using machine learning algorithms for intervertebral disc degeneration in the mouse model—an ORS spine section initiative. JOR Spine 4, e1164 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kusumoto, D. et al. Automated deep learning-based system to identify endothelial cells derived from induced pluripotent stem cells. Stem Cell Rep. 10, 1687–1695 (2018).

    Article  CAS  Google Scholar 

  150. Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).

    Article  CAS  PubMed  Google Scholar 

  151. Wade, L., Needham, L., McGuigan, P. & Bilzon, J. Applications and limitations of current markerless motion capture methods for clinical gait biomechanics. PeerJ 10, e12995 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Nath, T. et al. Using DeepLabCut for 3D markerless pose estimation across species and behaviors. Nat Protoc 14, 2152–2176 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Hession, L. E., Sabnis, G. S., Churchill, G. A. & Kumar, V. A machine-vision-based frailty index for mice. Nat Aging 2, 756–766 (2022).

    Article  Google Scholar 

  154. Schrack, J. A., Zipunnikov, V., Simonsick, E. M., Studenski, S. & Ferrucci, L. Rising energetic cost of walking predicts gait speed decline with aging. J. Gerontol. A 71, 947–953 (2016).

    Article  Google Scholar 

  155. Bair, W.-N. et al. Of aging mice and men: gait speed decline is a translatable trait, with species-specific underlying properties. J. Gerontol. A 74, 1413–1416 (2019).

    Article  Google Scholar 

  156. Cao, C. et al. Deep learning and its applications in biomedicine. Genomics Proteomics Bioinform. 16, 17–32 (2018).

    Article  Google Scholar 

  157. Mathis, M. W. & Mathis, A. Deep learning tools for the measurement of animal behavior in neuroscience. Curr. Opin. Neurobiol. 60, 1–11 (2020).

    Article  CAS  PubMed  Google Scholar 

  158. van Dam, E. A., Noldus, L. P. J. J. & van Gerven, M. A. J. Deep learning improves automated rodent behavior recognition within a specific experimental setup. J. Neurosci. Methods 332, 108536 (2020).

    Article  PubMed  Google Scholar 

  159. Baker, G. T. & Sprott, R. L. Biomarkers of aging. Exp. Gerontol. 23, 223–239 (1988).

    Article  PubMed  Google Scholar 

  160. Brinkley, T. E. et al. Research priorities for measuring biologic age: summary and future directions from the Research Centers Collaborative Network Workshop. GeroScience 44, 2573–2583 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Wang, Q. et al. An evaluation of aging measures: from biomarkers to clocks. Biogerontology 24, 303–328 (2022).

    Article  Google Scholar 

  162. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, 3156 (2013).

    Article  Google Scholar 

  163. Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. Galkin, F. et al. Biohorology and biomarkers of aging: current state-of-the-art, challenges and opportunities. Ageing Res. Rev. 60, 101050 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Rutledge, J., Oh, H. & Wyss-Coray, T. Measuring biological age using omics data. Nat. Rev. Genet. 23, 715–727 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Nielsen, J. L., Bakula, D. & Scheibye-Knudsen, M. Clinical trials targeting aging. Front. Aging 3, 820215 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Dubina, T. L., Dyundikova, V. A. & Zhuk, E. V. Biological age and its estimation. II. Assessment of biological age of albino rats by multiple regression analysis. Exp. Gerontol. 18, 5–18 (1983).

    Article  CAS  PubMed  Google Scholar 

  168. Dyundikova, V. A., Silvon, Z. K. & Dubina, T. L. Biological age and its estimation. I. Studies of some physiological parameters in albino rats and their validity as biological age tests. Exp. Gerontol. 16, 13–24 (1981).

    Article  CAS  PubMed  Google Scholar 

  169. Ludwig, F. C. & Smoke, M. E. The measurement of biological age. Exp. Aging Res. 6, 497–522 (1980).

    Article  CAS  PubMed  Google Scholar 

  170. Hofecker, G., Skalicky, M., Kment, A. & Niedermüller, H. Models of the biological age of the rat. I. A factor model of age parameters. Mech. Ageing Dev. 14, 345–359 (1980).

    Article  CAS  PubMed  Google Scholar 

  171. Skalicky, M., Hofecker, G., Kment, A. & Niedermüller, H. Models of the biological age of the rat. II. Multiple regression models in the study on influencing aging. Mech. Ageing Dev. 14, 361–377 (1980).

    Article  CAS  PubMed  Google Scholar 

  172. Levine, M. et al. A rat epigenetic clock recapitulates phenotypic aging and co-localizes with heterochromatin. eLife 9, e59201 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Schultz, M. B. et al. Age and life expectancy clocks based on machine learning analysis of mouse frailty. Nat. Commun. 11, 4618 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Bisset, E. S., Heinze-Milne, S., Grandy, S. A. & Howlett, S. E. Aerobic exercise attenuates frailty in aging male and female C57Bl/6 mice and effects systemic cytokines differentially by sex. J. Gerontol. A 77, 41–46 (2022).

    Article  CAS  Google Scholar 

  175. Mach, J., Kane, A. E., Howlett, S. E., Sinclair, D. A. & Hilmer, S. N. Applying the AFRAID and FRIGHT clocks to novel preclinical mouse models of polypharmacy. J. Gerontol. A 77, 1304–1312 (2022).

    Article  CAS  Google Scholar 

  176. Levine, M. E. et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 10, 573–591 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Petkovich, D. A. et al. Using DNA methylation profiling to evaluate biological age and longevity interventions. Cell Metab. 25, 954–960.e956 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Meer, M. V., Podolskiy, D. I., Tyshkovskiy, A. & Gladyshev, V. N. A whole lifespan mouse multi-tissue DNA methylation clock. eLife 7, e40675 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Thompson, M. J. et al. A multi-tissue full lifespan epigenetic clock for mice. Aging 10, 2832–2854 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Coninx, E. et al. Hippocampal and cortical tissue-specific epigenetic clocks indicate an increased epigenetic age in a mouse model for Alzheimer’s disease. Aging 12, 20817–20834 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Trapp, A., Kerepesi, C. & Gladyshev, V. N. Profiling epigenetic age in single cells. Nat. Aging 1, 1189–1201 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Belsky, D. W. et al. Quantification of the pace of biological aging in humans through a blood test, the DunedinPoAm DNA methylation algorithm. eLife 9, e54870 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Freund, A. Untangling aging using dynamic, organism-level phenotypic networks. Cell Syst. 8, 172–181 (2019).

    Article  PubMed  Google Scholar 

  184. Mangul, S. et al. Systematic benchmarking of omics computational tools. Nat. Commun. 10, 1393 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Cortassa, S. & Aon, M. A. Computational Systems Biology in Medicine and Biotechnology: Methods and Protocols Vol. 2399 (Springer, 2022).

  186. Han, Y. et al. Transcriptome features of striated muscle aging and predictability of protein level changes. Mol. Omics 17, 796–808 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Gligorijevic, V. & Przulj, N. Methods for biological data integration: perspectives and challenges. J. R. Soc. Interface 12, 20150571 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Rodosthenous, T., Shahrezaei, V. & Evangelou, M. Integrating multi-OMICS data through sparse canonical correlation analysis for the prediction of complex traits: a comparison study. Bioinformatics 36, 4616–4625 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Stahlschmidt, S. R., Ulfenborg, B. & Synnergren, J. Multimodal deep learning for biomedical data fusion: a review. Brief. Bioinform. 23, bbab569 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Jendoubi, T. Approaches to integrating metabolomics and multi-omics data: a primer. Metabolites 11, 184 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol 18, 83 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Huang, S., Chaudhary, K. & Garmire, L. X. More is better: recent progress in multi-omics data integration methods. Front. Genet. 8, 84 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Chatsirisupachai, K., Lesluyes, T., Paraoan, L., Van Loo, P. & de Magalhaes, J. P. An integrative analysis of the age-associated multi-omic landscape across cancers. Nat. Commun. 12, 2345 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Aon, M. A., Bernier, M. & de Cabo, R. in Computational Systems Biology in Medicine and Biotechnology: Methods and Protocols Vol. 2399 (eds Cortassa, S. & Aon, M. A.) 193–218 (Springer, 2022).

  195. Mattison, J. A. et al. Caloric restriction improves health and survival of rhesus monkeys. Nat. Commun. 8, 14063 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Mattison, J. A. et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489, 318–321 (2012).

    Article  CAS  PubMed  Google Scholar 

  197. Colman, R. J. et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325, 201–204 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Vijayakumar, S., Magazzu, G., Moon, P., Occhipinti, A. & Angione, C. in Computational Systems Biology in Medicine and Biotechnology: Methods and Protocols Vol. 2399 (eds Cortassa, S. & Aon, M. A.) 87–122 (Springer, 2022).

  199. Bigan, E. et al. Genetic cooperativity in multi-layer networks implicates cell survival and senescence in the striatum of Huntington’s disease mice synchronous to symptoms. Bioinformatics 36, 186–196 (2020).

    Article  CAS  PubMed  Google Scholar 

  200. Ogris, C., Hu, Y., Arloth, J. & Muller, N. S. Versatile knowledge guided network inference method for prioritizing key regulatory factors in multi-omics data. Sci. Rep. 11, 6806 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Oh, S. et al. GenomicSuperSignature facilitates interpretation of RNA-seq experiments through robust, efficient comparison to public databases. Nat. Commun. 13, 3695 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Meyer, F. et al. Tutorial: assessing metagenomics software with the CAMI benchmarking toolkit. Nat. Protoc. 16, 1785–1801 (2021).

    Article  CAS  PubMed  Google Scholar 

  203. Das, S. & Mukhopadhyay, I. TiMEG: an integrative statistical method for partially missing multi-omics data. Sci. Rep. 11, 24077 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Tarazona, S. et al. Harmonization of quality metrics and power calculation in multi-omic studies. Nat. Commun. 11, 3092 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Eid, F. E. et al. Systematic auditing is essential to debiasing machine learning in biology. Commun. Biol. 4, 183 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Succi, S. & Coveney, P. V. Big data: the end of the scientific method? Phil. Trans. R. Soc. A 377, 20180145 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Parkinson, H. et al. ArrayExpress—a public database of microarray experiments and gene expression profiles. Nucleic Acids Res. 35, D747–D750 (2007).

    Article  CAS  PubMed  Google Scholar 

  209. GTEx Consortium The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Article  Google Scholar 

  210. Vizcaino, J. A. et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 32, 223–226 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Deutsch, E. W. et al. The ProteomeXchange consortium at 10 years: 2023 update. Nucleic Acids Res. 51, D1539–D1548 (2023).

    Article  PubMed  Google Scholar 

  212. Perez-Riverol, Y. et al. Discovering and linking public omics data sets using the Omics Discovery Index. Nat. Biotechnol. 35, 406–409 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Schaum, N. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).

    Article  PubMed Central  Google Scholar 

  214. Tabula Muris Consortium A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 583, 590–595 (2020).

    Article  Google Scholar 

  215. Jarmusch, A. K. et al. ReDU: a framework to find and reanalyze public mass spectrometry data. Nat. Methods 17, 901–904 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Aging Atlas Consortium Aging Atlas: a multi-omics database for aging biology. Nucleic Acids Res. 49, D825–D830 (2020).

    Article  Google Scholar 

  217. Samad, M., Agostinelli, F., Sato, T., Shimaji, K. & Baldi, P. CircadiOmics: circadian omic web portal. Nucleic Acids Res. 50, W183–W190 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Ma, L. et al. Database Commons: a catalog of worldwide biological databases. Genomics Proteomics Bioinform. https://doi.org/10.1016/j.gpb.2022.12.004 (2022).

  219. Pilarczyk, M. et al. Connecting omics signatures and revealing biological mechanisms with iLINCS. Nat. Commun. 13, 4678 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Gao, Y. et al. AgingBank: a manually curated knowledgebase and high-throughput analysis platform that provides experimentally supported multi-omics data relevant to aging in multiple species. Brief. Bioinform. 23, bbac438 (2022).

    Article  PubMed  Google Scholar 

  221. Richardson, J. E., Eppig, J. T. & Nadeau, J. H. Building an integrated mouse genome database: a view from the front line. IEEE Eng. Med. Biol. Mag. 14, 718–724 (1995).

    Article  Google Scholar 

  222. Ringwald, M. et al. Mouse Genome Informatics (MGI): latest news from MGD and GXD. Mamm. Genome 33, 4–18 (2022).

    Article  PubMed  Google Scholar 

  223. Twigger, S. et al. Rat Genome Database (RGD): mapping disease onto the genome. Nucleic Acids Res. 30, 125–128 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Smith, J. R. et al. The Year of the Rat: The Rat Genome Database at 20: a multi-species knowledgebase and analysis platform. Nucleic Acids Res. 48, D731–D742 (2020).

    CAS  PubMed  Google Scholar 

  225. de Magalhães, J. P., Costa, J. & Toussaint, O. HAGR: the human ageing genomic resources. Nucleic Acids Res. 33, D537–D543 (2005).

    Article  PubMed  Google Scholar 

  226. Luo, Y. et al. New developments on the Encyclopedia of DNA Elements (ENCODE) data portal. Nucleic Acids Res. 48, D882–D889 (2020).

    Article  CAS  PubMed  Google Scholar 

  227. Consortium, T. E. P. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306, 636–640 (2004).

    Article  Google Scholar 

  228. Craig, T. et al. The Digital Ageing Atlas: integrating the diversity of age-related changes into a unified resource. Nucleic Acids Res. 43, D873–D878 (2015).

    Article  CAS  PubMed  Google Scholar 

  229. Peterson, K. A. & Murray, S. A. Progress towards completing the mutant mouse null resource. Mamm. Genome 33, 123–134 (2022).

    Article  CAS  PubMed  Google Scholar 

  230. Gallagher, M. et al. What are the threats to successful brain and cognitive aging? Neurobiol. Aging 83, 130–134 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. McQuail, J. A. et al. Cognitive reserve in model systems for mechanistic discovery: the importance of longitudinal studies. Front. Aging Neurosci. 12, 607685 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Pang, Z. et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49, W388–W396 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Mina, A. I. et al. CalR: a web-based analysis tool for indirect calorimetry experiments. Cell Metab. 28, 656–666.e651 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Lauer, J. et al. Multi-animal pose estimation, identification and tracking with DeepLabCut. Nat. Methods 19, 496–504 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Zierer, J., Menni, C., Kastenmuller, G. & Spector, T. D. Integration of ‘omics’ data in aging research: from biomarkers to systems biology. Aging Cell 14, 933–944 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Deng, G. et al. Targeting cathepsin B by cycloastragenol enhances antitumor immunity of CD8 T cells via inhibiting MHC-I degradation. J. Immunother. Cancer 10, e004874 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Lu, R. J. et al. Multi-omic profiling of primary mouse neutrophils predicts a pattern of sex and age-related functional regulation. Nat. Aging 1, 715–733 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Wang, Y., Liu, L., Song, Y., Yu, X. & Deng, H. Unveiling E2F4, TEAD1 and AP-1 as regulatory transcription factors of the replicative senescence program by multi-omics analysis. Protein Cell 13, 742–759 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Mahmoudi, S. et al. Heterogeneity in old fibroblasts is linked to variability in reprogramming and wound healing. Nature 574, 553–558 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Benjamin, D. I. et al. Multiomics reveals glutathione metabolism as a driver of bimodality during stem cell aging. Cell Metab. 35, 472–486.e476 (2023).

    Article  CAS  PubMed  Google Scholar 

  241. Xie, S. et al. Aging and obesity prime the methylome and transcriptome of adipose stem cells for disease and dysfunction. FASEB J. 37, e22785 (2023).

    Article  CAS  PubMed  Google Scholar 

  242. Nodari, A. et al. Interferon regulatory factor 7 impairs cellular metabolism in aging adipose-derived stromal cells. J. Cell Sci. 134, jcs256230 (2021).

    Article  CAS  PubMed  Google Scholar 

  243. Moudra, A. et al. Phenotypic and clonal stability of antigen-inexperienced memory-like T cells across the genetic background, hygienic status, and aging. J. Immunol. 206, 2109–2121 (2021).

    Article  CAS  PubMed  Google Scholar 

  244. Baptista, L. C. et al. Multiomics profiling of the impact of an angiotensin (1–7)-expressing probiotic combined with exercise training in aged male rats. J. Appl. Physiol. 134, 1135–1153 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Yang, G. et al. The essential roles of FXR in diet and age influenced metabolic changes and liver disease development: a multi-omics study. Biomark. Res. 11, 20 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Roberts, B. M. et al. Effects of an exogenous ketone ester using multi-omics in skeletal muscle of aging C57BL/6J male mice. Front. Nutr. 9, 1041026 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Lu, Y. et al. Multi-omics analysis reveals neuroinflammation, activated glial signaling, and dysregulated synaptic signaling and metabolism in the hippocampus of aged mice. Front. Aging Neurosci. 14, 964429 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Jiang, X. et al. An integrated multi-omics approach revealed the regulation of melatonin on age-dependent mitochondrial function impair and lipid dyshomeostasis in mice hippocampus. Pharmacol. Res. 179, 106210 (2022).

    Article  CAS  PubMed  Google Scholar 

  249. Roichman, A. et al. Restoration of energy homeostasis by SIRT6 extends healthy lifespan. Nat. Commun. 12, 3208 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Currais, A. et al. A comprehensive multiomics approach toward understanding the relationship between aging and dementia. Aging 7, 937–955 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Zhang, D. et al. Spatial epigenome-transcriptome co-profiling of mammalian tissues. Nature 616, 113–122 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Hernando-Herraez, I. et al. Ageing affects DNA methylation drift and transcriptional cell-to-cell variability in mouse muscle stem cells. Nat. Commun. 10, 4361 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Al-Amrani, S., Al-Jabri, Z., Al-Zaabi, A., Alshekaili, J. & Al-Khabori, M. Proteomics: concepts and applications in human medicine. World J. Biol. Chem. 12, 57–69 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Haas, R. et al. Designing and interpreting ‘multi-omic’ experiments that may change our understanding of biology. Curr. Opin. Syst. Biol. 6, 37–45 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Wei, P. et al. Urinary metabolomic and proteomic analyses in a mouse model of prostatic inflammation. Urine 1, 17–23 (2019).

    Article  PubMed  Google Scholar 

  256. Feng, Q. et al. The anti-aging effects of Renshen Guben on thyrotoxicosis mice: improving immunosenescence, hypoproteinemia, lipotoxicity, and intestinal flora. Front. Immunol. 13, 983501 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Labunskyy, V. M. & Gladyshev, V. N. Role of reactive oxygen species-mediated signaling in aging. Antioxid. Redox Signal 19, 1362–1372 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Miyajima, M. et al. Leucine-rich α2-glycoprotein is a novel biomarker of neurodegenerative disease in human cerebrospinal fluid and causes neurodegeneration in mouse cerebral cortex. PLoS ONE 8, e74453 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Porpiglia, E. et al. Elevated CD47 is a hallmark of dysfunctional aged muscle stem cells that can be targeted to augment regeneration. Cell Stem Cell 29, 1653–1668.e1658 (2022).

    Article  CAS  PubMed  Google Scholar 

  260. Vafadarnejad, E. et al. Dynamics of cardiac neutrophil diversity in murine myocardial infarction. Circ. Res. 127, e232–e249 (2020).

    Article  CAS  PubMed  Google Scholar 

  261. Han, X. Lipidomics for studying metabolism. Nat. Rev. Endocrinol. 12, 668–679 (2016).

    Article  CAS  PubMed  Google Scholar 

  262. Bauer, K. C. et al. Dietary intervention reverses fatty liver and altered gut microbiota during early-life undernutrition. mSystems 5, e00499-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Zhang, B. et al. Gut microbiota dysbiosis induced by decreasing endogenous melatonin mediates the pathogenesis of Alzheimer’s disease and obesity. Front. Immunol. 13, 900132 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Kabra, M., Robie, A. A., Rivera-Alba, M., Branson, S. & Branson, K. JAABA: interactive machine learning for automatic annotation of animal behavior. Nat. Methods 10, 64–67 (2013).

    Article  CAS  PubMed  Google Scholar 

  265. Machado, A. S., Darmohray, D. M., Fayad, J., Marques, H. G. & Carey, M. R. A quantitative framework for whole-body coordination reveals specific deficits in freely walking ataxic mice. eLife 4, e07892 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Graving, J. M. et al. DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning. eLife 8, e47994 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Pereira, T. D. et al. Fast animal pose estimation using deep neural networks. Nat. Methods 16, 117–125 (2019).

    Article  CAS  PubMed  Google Scholar 

  268. Romero-Ferrero, F., Bergomi, M. G., Hinz, R. C., Heras, F. J. H. & de Polavieja, G. G. idtracker.ai: tracking all individuals in small or large collectives of unmarked animals. Nat. Methods 16, 179–182 (2019).

    Article  CAS  PubMed  Google Scholar 

  269. Arac, A., Zhao, P., Dobkin, B. H., Carmichael, S. T. & Golshani, P. DeepBehavior: a deep learning toolbox for automated analysis of animal and human behavior imaging data. Front. Syst. Neurosci. 13, 20 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Wiltschko, A. B. et al. Revealing the structure of pharmacobehavioral space through motion sequencing. Nat. Neurosci. 23, 1433–1443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Karashchuk, P. et al. Anipose: a toolkit for robust markerless 3D pose estimation. Cell Rep. 36, 109730 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Pereira, T. D. et al. SLEAP: a deep learning system for multi-animal pose tracking. Nat. Methods 19, 486–495 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Wang, T. et al. Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. Genome Biol. 18, 57 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Stubbs, T. M. et al. Multi-tissue DNA methylation age predictor in mouse. Genome Biol. 18, 68 (2017).

    Article  PubMed Central  Google Scholar 

  275. Antoch, M. P. et al. Physiological frailty index (PFI): quantitative in-life estimate of individual biological age in mice. Aging 9, 615–626 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Han, Y. et al. Epigenetic age-predictor for mice based on three CpG sites. eLife 7, e37462 (2018).

    Article  PubMed Central  Google Scholar 

  277. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Iijima, H. et al. Meta-analysis integrated with multi-omics data analysis to elucidate pathogenic mechanisms of age-related knee osteoarthritis in mice. J. Gerontol. A 77, 1321–1334 (2022).

    Article  CAS  Google Scholar 

  279. Snel, B., Lehmann, G., Bork, P. & Huynen, M. A. STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res. 28, 3442–3444 (2000).

    Article  CAS  PubMed  Google Scholar 

  280. Szklarczyk, D. et al. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 51, D638–D646 (2023).

    Article  CAS  PubMed  Google Scholar 

  281. D’Amico, D. et al. The RNA-binding protein PUM2 impairs mitochondrial dynamics and mitophagy during aging. Mol. Cell 73, 775–787.e710 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  282. Dennis, G. et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4, R60 (2003).

    Article  PubMed Central  Google Scholar 

  283. Sherman, B. T. et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 50, W216–W221 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Otasek, D., Morris, J. H., Boucas, J., Pico, A. R. & Demchak, B. Cytoscape Automation: empowering workflow-based network analysis. Genome Biol. 20, 185 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).

    Article  Google Scholar 

  287. Cottret, L. et al. MetExplore: a web server to link metabolomic experiments and genome-scale metabolic networks. Nucleic Acids Res. 38, W132–137 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Rinschen, M. M. et al. Metabolic rewiring of the hypertensive kidney. Sci. Signal 12, eaax9760 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Liu, T. et al. PaintOmics 4: new tools for the integrative analysis of multi-omics datasets supported by multiple pathway databases. Nucleic Acids Res. 50, W551–W559 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Kamburov, A., Cavill, R., Ebbels, T. M., Herwig, R. & Keun, H. C. Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA. Bioinformatics 27, 2917–2918 (2011).

    Article  CAS  PubMed  Google Scholar 

  291. Kramer, A., Green, J., Pollard, J. Jr. & Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 30, 523–530 (2014).

    Article  PubMed  Google Scholar 

  292. Zhou, G. et al. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 47, W234–W241 (2019).

    Article  CAS  PubMed  Google Scholar 

  293. Arneson, D., Bhattacharya, A., Shu, L., Mäkinen, V.-P. & Yang, X. Mergeomics: a web server for identifying pathological pathways, networks, and key regulators via multidimensional data integration. BMC Genomics 17, 722 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  294. Ding, J. et al. Mergeomics 2.0: a web server for multi-omics data integration to elucidate disease networks and predict therapeutics. Nucleic Acids Res. 49, W375–W387 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Gao, S., Casey, A. E., Sargeant, T. J. & Mäkinen, V.-P. Genetic variation within endolysosomal system is associated with late-onset Alzheimer’s disease. Brain 141, 2711–2720 (2018).

    Article  PubMed  Google Scholar 

  296. Rohart, F., Gautier, B., Singh, A. & Le Cao, K. A. mixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 13, e1005752 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  297. Guttà, C., Morhard, C. & Rehm, M. Applying a GAN-based classifier to improve transcriptome-based prognostication in breast cancer. PLoS Comput. Biol. 19, e1011035 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  298. Hinshaw, S. J., Lee, A. H. Y., Gill, E. E. & Hancock, R. E. W. MetaBridge: enabling network-based integrative analysis via direct protein interactors of metabolites. Bioinformatics 34, 3225–3227 (2018).

    Article  CAS  PubMed  Google Scholar 

  299. Bell, H. N. et al. Reuterin in the healthy gut microbiome suppresses colorectal cancer growth through altering redox balance. Cancer Cell 40, 185–200 e186 (2022).

    Article  CAS  PubMed  Google Scholar 

  300. Uppal, K., Ma, C., Go, Y. M., Jones, D. P. & Wren, J. xMWAS: a data-driven integration and differential network analysis tool. Bioinformatics 34, 701–702 (2018).

    Article  CAS  PubMed  Google Scholar 

  301. Koh, H. W. L. et al. iOmicsPASS: network-based integration of multiomics data for predictive subnetwork discovery. NPJ Syst. Biol. Appl. 5, 22 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  302. Baum, A. & Vermue, L. Multiblock PLS: block dependent prediction modeling for Python. J. Open Source Softw. 4, 1190 (2019).

    Article  Google Scholar 

  303. Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  304. Mallick, H. et al. Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences. Nat. Commun. 10, 3136 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  305. Jun, S. R. et al. Multi-omic analysis reveals different effects of sulforaphane on the microbiome and metabolome in old compared to young mice. Microorganisms 8, 1500 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. McIntyre, L. M. et al. GAIT-GM: Galaxy tools for modeling metabolite changes as a function of gene expression. Preprint at bioRxiv https://doi.org/10.1101/2020.12.25.424407 (2020).

  307. McIntyre, L. M. et al. GAIT-GM integrative cross-omics analyses reveal cholinergic defects in a C. elegans model of Parkinson’s disease. Sci Rep 12, 3268 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Canzler, S. & Hackermuller, J. multiGSEA: a GSEA-based pathway enrichment analysis for multi-omics data. BMC Bioinform. 21, 561 (2020).

    Article  Google Scholar 

  309. Song, X. et al. Multi-omics characterization of type 2 diabetes mellitus-induced cognitive impairment in the db/db mouse model. Molecules 27, 1904 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Tal, O., Selvaraj, G., Medina, S., Ofaim, S. & Freilich, S. NetMet: a network-based tool for predicting metabolic capacities of microbial species and their interactions. Microorganisms 8, 840 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Zhou, G., Ewald, J. & Xia, J. OmicsAnalyst: a comprehensive web-based platform for visual analytics of multi-omics data. Nucleic Acids Res. 49, W476–W482 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Makarious, M. B. et al. GenoML: automated machine learning for genomics. Preprint at https://doi.org/10.48550/arXiv.2103.03221 (2021).

  313. Mechteridis, K., Lauber, M., Baumbach, J. & List, M. KeyPathwayMineR: de novo pathway enrichment in the R ecosystem. Front. Genet. 12, 812853 (2021).

    Article  CAS  PubMed  Google Scholar 

  314. Ghanat Bari, M., Ung, C. Y., Zhang, C., Zhu, S. & Li, H. Machine learning-assisted network inference approach to identify a new class of genes that coordinate the functionality of cancer networks. Sci. Rep. 7, 6993 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  315. Bodein, A., Scott-Boyer, M. P., Perin, O., Le Cao, K. A. & Droit, A. Interpretation of network-based integration from multi-omics longitudinal data. Nucleic Acids Res. 50, e27 (2022).

    Article  CAS  PubMed  Google Scholar 

  316. Noecker, C., Eng, A., Muller, E. & Borenstein, E. MIMOSA2: a metabolic network-based tool for inferring mechanism-supported relationships in microbiome-metabolome data. Bioinformatics 38, 1615–1623 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Pun, F. W. et al. Hallmarks of aging-based dual-purpose disease and age-associated targets predicted using PandaOmics AI-powered discovery engine. Aging 14, 2475–2506 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Harbig, T. A., Fratte, J., Krone, M. & Nieselt, K. OmicsTIDE: interactive exploration of trends in multi-omics data. Bioinform. Adv. 3, vbac093 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  319. Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Rosenblatt, F. Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms (Spartan, 1962).

  321. Krizhevsky, A., Sutskever, I. & Hinton, G. E. in Advances in Neural Information Processing Systems 25 (eds Pereira, F., Burges, C. J., Bottou, L. & Weinberger, K. Q.) 1097–1105 (Advances in Neural Information Processing Systems, 2012)

  322. Erdos, P. & Renyi, A. On random graphs I. Publ. Math. Debrecen 6, 290–297 (1959).

    Article  Google Scholar 

  323. Granovetter, M. S. The strenght of weak ties. Am. J. Sociol. 78, 1360–1380 (1973).

    Article  Google Scholar 

  324. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).

    Article  CAS  PubMed  Google Scholar 

  325. Mitchell, M. Artificial Intelligence: A Guide for Thinking Humans (Farrar, Strauss and Giroux, 2019).

  326. Noble, R., Tasaki, K., Noble, P. J. & Noble, D. Biological relativity requires circular causality but not symmetry of causation: so, where, what and when are the boundaries? Front. Physiol. 10, 827–827 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  327. Fernandez, M. E. et al. Context- and scale-dependent effects of thymol bioactivity on biological networks: contributions from quail under heat stress. Preprint at bioRxiv https://doi.org/10.1101/2022.06.10.495659 (2022).

  328. Cortassa, S., Aon, M. A., Iglesias, A. A., Aon, J. C. & Lloyd, D. An Introduction to Metabolic and Cellular Engineering 2nd edn (World Scientific Publishing, 2012).

  329. Vidal, M. A unifying view of 21st century systems biology. FEBS Lett. 583, 3891–3894 (2009).

    Article  CAS  PubMed  Google Scholar 

  330. Von Bertalanffy, L. The theory of open systems in physics and biology. Science 111, 23–29 (1950).

    Article  Google Scholar 

  331. Aon, M. A., Lloyd, D. & Saks, V. in Systems Biology of Metabolic and Signaling Networks. Energy, Mass and Information Transfer Vol. 16 (eds Aon, M. A., Saks, V. & Schlattner, U.) 3–17 (Springer, 2014).

  332. Noble, D. & Boyd, C. A. R. in Logic of Life: The Challenge of Integrative Physiology (eds Boyd, C. A. R. & Noble, D.) 1–13 (Oxford Univ. Press, 1993).

  333. MacEachern, S. J. & Forkert, N. D. Machine learning for precision medicine. Genome 64, 416–425 (2020).

    Article  PubMed  Google Scholar 

  334. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article  CAS  PubMed  Google Scholar 

  335. Big data and analytics support. IBM https://www.ibm.com/docs/en/spectrum-scale-bda?topic=big-data-analytics-support (2023).

  336. Wilder-James, E. What is big data? An introduction to the big data landscape. O’Reilly https://www.oreilly.com/radar/what-is-big-data/ (2012).

Download references

Acknowledgements

M.A.A. is an employee of Kelly Government Solutions. This work was supported by the Intramural Research Program of the National Institute on Aging/NIH.

Author information

Authors and Affiliations

Authors

Contributions

All authors were responsible for conceptualization and methodology. M.E.F., J.M.-R. and M.A.A. were responsible for data collection and writing the original draft. All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Rafael de Cabo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Lab Animal thanks Dan Ehninger, Simon Melov and João Pedro de Magalhães for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Sheet 1: Supplementary Table 1. Additional multi-omics studies in preclinical aging research in rodent models. Sheet 2: Supplementary Table 2. Number of PubMed articles retrieved with keywords representing the major driving forces in Fig. 1a, at global or preclinical aging research level.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez, M.E., Martinez-Romero, J., Aon, M.A. et al. How is Big Data reshaping preclinical aging research?. Lab Anim 52, 289–314 (2023). https://doi.org/10.1038/s41684-023-01286-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41684-023-01286-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing