Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Considerations for reproducible omics in aging research

Abstract

Technical advancements over the past two decades have enabled the measurement of the panoply of molecules of cells and tissues including transcriptomes, epigenomes, metabolomes and proteomes at unprecedented resolution. Unbiased profiling of these molecular landscapes in the context of aging can reveal important details about mechanisms underlying age-related functional decline and age-related diseases. However, the high-throughput nature of these experiments creates unique analytical and design demands for robustness and reproducibility. In addition, ‘omic’ experiments are generally onerous, making it crucial to effectively design them to eliminate as many spurious sources of variation as possible as well as account for any biological or technical parameter that may influence such measures. In this Perspective, we provide general guidelines on best practices in the design and analysis of omic experiments in aging research from experimental design to data analysis and considerations for long-term reproducibility and validation of such studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Considerations for the use of omics in aging research.

Similar content being viewed by others

References

  1. Qiu, P. Embracing the dropouts in single-cell RNA-seq analysis. Nat. Commun. 11, 1169 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Squair, J. W. et al. Confronting false discoveries in single-cell differential expression. Nat. Commun. 12, 5692 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schaum, N. et al. Ageing hallmarks exhibit organ-specific temporal signatures. Nature 583, 596–602 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Benayoun, B. A. et al. Remodeling of epigenome and transcriptome landscapes with aging in mice reveals widespread induction of inflammatory responses. Genome Res. 29, 697–709 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dulken, B. W. et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571, 205–210 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Rutledge, J., Oh, H. & Wyss-Coray, T. Measuring biological age using omics data. Nat. Rev. Genet. 23, 715–727 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang, Z. et al. Longitudinal comparative transcriptomics reveals unique mechanisms underlying extended healthspan in bats. Nat. Ecol. Evol. 3, 1110–1120 (2019).

    Article  PubMed  Google Scholar 

  9. Ma, S. et al. Comparative transcriptomics across 14 Drosophila species reveals signatures of longevity. Aging Cell 17, e12740 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ma, S. et al. Cell culture-based profiling across mammals reveals DNA repair and metabolism as determinants of species longevity. eLife 5, e19130 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Landt, S. G. et al. ChIP–seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 17, 13 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 15, e8746 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yan, F., Powell, D. R., Curtis, D. J. & Wong, N. C. From reads to insight: a hitchhiker’s guide to ATAC–seq data analysis. Genome Biol. 21, 22 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Baek, S. & Lee, I. Single-cell ATAC sequencing analysis: from data preprocessing to hypothesis generation. Comput. Struct. Biotechnol. J. 18, 1429–1439 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alseekh, S. et al. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat. Methods 18, 747–756 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nakayasu, E. S. et al. Tutorial: best practices and considerations for mass-spectrometry-based protein biomarker discovery and validation. Nat. Protoc. 16, 3737–3760 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miller, R. A. & Nadon, N. L. Principles of animal use for gerontological research. J. Gerontol. A Biol. Sci. Med. Sci. 55, B117–B123 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Percie du Sert, N. et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 18, e3000410 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Austad, S. N. Sex differences in health and aging: a dialog between the brain and gonad? GeroScience 41, 267–273 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen, Y., Kim, M., Paye, S. & Benayoun, B. A. Sex as a biological variable in nutrition research: from human studies to animal models. Annu. Rev. Nutr. 42, 227–250 (2022).

  22. Oliva, M. et al. The impact of sex on gene expression across human tissues. Science 369, eaba3066 (2020).

  23. Qu, K. et al. Individuality and variation of personal regulomes in primary human T cells. Cell Syst. 1, 51–61 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu, R. J. et al. Multi-omic profiling of primary mouse neutrophils predicts a pattern of sex and age-related functional regulation. Nat. Aging 1, 715–733 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jaric, I., Rocks, D., Greally, J. M., Suzuki, M. & Kundakovic, M. Chromatin organization in the female mouse brain fluctuates across the oestrous cycle. Nat. Commun. 10, 2851 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Knight, A. K. et al. Characterization of gene expression changes over healthy term pregnancies. PLoS ONE 13, e0204228 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Garratt, M., Try, H., Smiley, K. O., Grattan, D. R. & Brooks, R. C. Mating in the absence of fertilization promotes a growth–reproduction versus lifespan trade-off in female mice. Proc. Natl Acad. Sci. USA 117, 15748–15754 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Acosta-Rodriguez, V. A., Rijo-Ferreira, F., Green, C. B. & Takahashi, J. S. Importance of circadian timing for aging and longevity. Nat. Commun. 12, 2862 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl Acad. Sci. USA 111, 16219–16224 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ferreira, P. G. et al. The effects of death and post-mortem cold ischemia on human tissue transcriptomes. Nat. Commun. 9, 490 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bonadio, R. S. et al. Insights into how environment shapes post-mortem RNA transcription in mouse brain. Sci. Rep. 11, 13008 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Highet, B., Parker, R., Faull, R. L. M., Curtis, M. A. & Ryan, B. RNA quality in post-mortem human brain tissue is affected by Alzheimer’s disease. Front. Mol. Neurosci. 14, 780352 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. White, K. et al. Effect of postmortem interval and years in storage on RNA quality of tissue at a repository of the NIH NeuroBioBank. Biopreserv. Biobank. 16, 148–157 (2018).

    Article  CAS  Google Scholar 

  34. Consortium, G. T. et al. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

    Article  Google Scholar 

  35. Liao, C. Y., Rikke, B. A., Johnson, T. E., Diaz, V. & Nelson, J. F. Genetic variation in the murine lifespan response to dietary restriction: from life extension to life shortening. Aging Cell 9, 92–95 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Mitchell, S. J. et al. Effects of sex, strain, and energy intake on hallmarks of aging in mice. Cell Metab. 23, 1093–1112 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Simon, M. M. et al. A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biol. 14, R82 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Urban, N. D. et al. Explaining inter-lab variance in C. elegans N2 lifespan: making a case for standardized reporting to enhance reproducibility. Exp. Gerontol. 156, 111622 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Harrison, D. E. et al. Acarbose, 17-α-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell 13, 273–282 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Kim, M. & Benayoun, B. A. The microbiome: an emerging key player in aging and longevity. Transl. Med. Aging 4, 103–116 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ericsson, A. C. et al. Supplier-origin mouse microbiomes significantly influence locomotor and anxiety-related behavior, body morphology, and metabolism. Commun. Biol. 4, 716 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pettan-Brewer, C. & Treuting, P. M. Practical pathology of aging mice. Pathobiol. Aging Age Relat. Dis. 1, https://doi.org/10.3402/pba.v1i0.7202 (2011).

  43. Teefy, B. B. et al. Dynamic regulation of gonadal transposon control across the lifespan of the naturally short-lived African turquoise killifish. Genome Res. 33, 141–153 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Keele, G. R. et al. Global and tissue-specific aging effects on murine proteomes. Preprint at bioRxiv https://doi.org/10.1101/2022.05.17.492125 (2022).

  45. Herrera-Marcos, L. V., Lou-Bonafonte, J. M., Arnal, C., Navarro, M. A. & Osada, J. Transcriptomics and the Mediterranean diet: a systematic review. Nutrients 9, 472 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gaye, A., Gibbons, G. H., Barry, C., Quarells, R. & Davis, S. K. Influence of socioeconomic status on the whole blood transcriptome in African Americans. PLoS ONE 12, e0187290 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ni, Y., Hall, A. W., Battenhouse, A. & Iyer, V. R. Simultaneous SNP identification and assessment of allele-specific bias from ChIP–seq data. BMC Genet. 13, 46 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kumasaka, N., Knights, A. J. & Gaffney, D. J. Fine-mapping cellular QTLs with RASQUAL and ATAC-seq. Nat. Genet. 48, 206–213 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Kader, F. & Ghai, M. DNA methylation-based variation between human populations. Mol. Genet. Genomics 292, 5–35 (2017).

    CAS  Google Scholar 

  50. Wu, L. et al. Variation and genetic control of protein abundance in humans. Nature 499, 79–82 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang, X. et al. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 16, 995–1004 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Haraksingh, R. R. & Snyder, M. P. Impacts of variation in the human genome on gene regulation. J. Mol. Biol. 425, 3970–3977 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Stegle, O., Parts, L., Piipari, M., Winn, J. & Durbin, R. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat. Protoc. 7, 500–507 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Goncalves, A. N. A. et al. Assessing the impact of sample heterogeneity on transcriptome analysis of human diseases using MDP webtool. Front. Genet. 10, 971 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bonomi, L., Huang, Y. & Ohno-Machado, L. Privacy challenges and research opportunities for genomic data sharing. Nat. Genet. 52, 646–654 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. O’Doherty, K. C. et al. Toward better governance of human genomic data. Nat. Genet. 53, 2–8 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Liu, Y., Zhou, J. & White, K. P. RNA-seq differential expression studies: more sequence or more replication? Bioinformatics 30, 301–304 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Schurch, N. J. et al. How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA 22, 839–851 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lamarre, S. et al. Optimization of an RNA-seq differential gene expression analysis depending on biological replicate number and library size. Front. Plant Sci. 9, 108 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sefer, E., Kleyman, M. & Bar-Joseph, Z. Tradeoffs between dense and replicate sampling strategies for high-throughput time series experiments. Cell Syst. 3, 35–42 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schmid, K. T. et al. scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies. Nat. Commun. 12, 6625 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Poplawski, A. & Binder, H. Feasibility of sample size calculation for RNA-seq studies. Brief. Bioinform. 19, 713–720 (2018).

    CAS  Google Scholar 

  63. Gladyshev, V. N. Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes. Aging Cell 15, 594–602 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hernando-Herraez, I. et al. Ageing affects DNA methylation drift and transcriptional cell-to-cell variability in mouse muscle stem cells. Nat. Commun. 10, 4361 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. White, R. R. et al. Comprehensive transcriptional landscape of aging mouse liver. BMC Genomics 16, 899 (2015).

    Google Scholar 

  66. Angelidis, I. et al. An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat. Commun. 10, 963 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ibañez-Solé, O., Ascensión, A. M., Araúzo-Bravo, M. J. & Izeta, A. Lack of evidence for increased transcriptional noise in aged tissues. eLife 11, e80380 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yang, K., Li, J. & Gao, H. The impact of sample imbalance on identifying differentially expressed genes. BMC Bioinformatics 7, S8 (2006).

    Google Scholar 

  69. Walther, D. M. & Mann, M. Accurate quantification of more than 4000 mouse tissue proteins reveals minimal proteome changes during aging. Mol. Cell. Proteomics 10, M110.004523 (2011).

    Article  PubMed  Google Scholar 

  70. Kalamakis, G. et al. Quiescence modulates stem cell maintenance and regenerative capacity in the aging brain. Cell 176, 1407–1419 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Stoeckius, M. et al. Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 19, 224 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mylka, V. et al. Comparative analysis of antibody- and lipid-based multiplexing methods for single-cell RNA-seq. Genome Biol. 23, 55 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, Y. et al. Sample-multiplexing approaches for single-cell sequencing. Cell. Mol. Life Sci. 79, 466 (2022).

    Article  CAS  Google Scholar 

  74. 10x Genomics. Which Nuclei Isolation Protocols are Supported for Use with the 3CellPlex Kit for Cell Multiplexing? https://kb.10xgenomics.com/hc/en-us/articles/360061929592-Which-nuclei-isolation-protocols-are-supported-for-use-with-the-3-CellPlex-Kit-for-Cell-Multiplexing (2022).

  75. Nyamundanda, G., Poudel, P., Patil, Y. & Sadanandam, A. A novel statistical method to diagnose, quantify and correct batch effects in genomic studies. Sci. Rep. 7, 10849 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kujawa, T., Marczyk, M. & Polanska, J. Influence of single-cell RNA sequencing data integration on the performance of differential gene expression analysis. Front. Genet. 13, 1009316 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Leek, J. T. svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res. 42, e161 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Jaffe, A. E. et al. Practical impacts of genomic data ‘cleaning’ on biological discovery using surrogate variable analysis. BMC Bioinformatics 16, 372 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Risso, D., Ngai, J., Speed, T. P. & Dudoit, S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 32, 896–902 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tran, H. T. N. et al. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol. 21, 12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Loven, J. et al. Revisiting global gene expression analysis. Cell 151, 476–482 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Stewart-Morgan, K. R., Reveron-Gomez, N. & Groth, A. Transcription restart establishes chromatin accessibility after DNA replication. Mol. Cell 75, 284–297 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Orlando, D. A. et al. Quantitative ChIP–seq normalization reveals global modulation of the epigenome. Cell Rep. 9, 1163–1170 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Baik, B., Yoon, S. & Nam, D. Benchmarking RNA-seq differential expression analysis methods using spike-in and simulation data. PLoS ONE 15, e0232271 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen, Y., Bravo, J. I., Son, J. M., Lee, C. & Benayoun, B. A. Remodeling of the H3 nucleosomal landscape during mouse aging. Transl. Med. Aging 4, 22–31 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Tabula Muris, C. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 583, 590–595 (2020).

    Article  Google Scholar 

  88. Singh, P. et al. Lymphoid neogenesis and immune infiltration in aged liver. Hepatology 47, 1680–1690 (2008).

    Article  PubMed  Google Scholar 

  89. Nevalainen, T., Autio, A. & Hurme, M. Composition of the infiltrating immune cells in the brain of healthy individuals: effect of aging. Immun. Ageing 19, 45 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Avila Cobos, F., Alquicira-Hernandez, J., Powell, J. E., Mestdagh, P. & De Preter, K. Benchmarking of cell type deconvolution pipelines for transcriptomics data. Nat. Commun. 11, 5650 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Thrupp, N. et al. Single-nucleus RNA-seq is not suitable for detection of microglial activation genes in humans. Cell Rep. 32, 108189 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Young, M. D. & Behjati, S. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. GigaScience 9, giaa151 (2020).

  93. Machado, L. et al. Tissue damage induces a conserved stress response that initiates quiescent muscle stem cell activation. Cell Stem Cell 28, 1125–1135 (2021).

    CAS  Google Scholar 

  94. Machado, L. et al. In situ fixation redefines quiescence and early activation of skeletal muscle stem cells. Cell Rep. 21, 1982–1993 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Gatto, L. et al. Initial recommendations for performing, benchmarking and reporting single-cell proteomics experiments. Nat. Methods 20, 375–386 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pappireddi, N., Martin, L. & Wuhr, M. A review on quantitative multiplexed proteomics. ChemBioChem 20, 1210–1224 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Contrepois, K. et al. Cross-platform comparison of untargeted and targeted lipidomics approaches on aging mouse plasma. Sci. Rep. 8, 17747 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. McCarthy, D. J. & Smyth, G. K. Testing significance relative to a fold-change threshold is a TREAT. Bioinformatics 25, 765–771 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE blacklist: identification of problematic regions of the genome. Sci. Rep. 9, 9354 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Corces, M. R. et al. An improved ATAC–seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Argyropoulos, C., Daskalakis, A., Nikiforidis, G. C. & Sakellaropoulos, G. C. Background adjustment of cDNA microarray images by maximum entropy distributions. J. Biomed. Inform. 43, 496–509 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Wang, Z., Gerstein, M. & Snyder, M. RNA-seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Panina, Y., Germond, A., Masui, S. & Watanabe, T. M. Validation of common housekeeping genes as reference for qPCR gene expression analysis during iPS reprogramming process. Sci. Rep. 8, 8716 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Hughes, T. R. ‘Validation’ in genome-scale research. J. Biol. 8, 3 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Coenye, T. Do results obtained with RNA-sequencing require independent verification? Biofilm 3, 100043 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Mehta, D., Ahkami, A. H., Walley, J., Xu, S. L. & Uhrig, R. G. The incongruity of validating quantitative proteomics using western blots. Nat. Plants 8, 1320–1321 (2022).

    Article  PubMed  Google Scholar 

  107. Aebersold, R., Burlingame, A. L. & Bradshaw, R. A. Western blots versus selected reaction monitoring assays: time to turn the tables? Mol. Cell. Proteomics 12, 2381–2382 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Martinez-Jimenez, C. P. et al. Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science 355, 1433–1436 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mahmoudi, S. et al. Heterogeneity in old fibroblasts is linked to variability in reprogramming and wound healing. Nature 574, 553–558 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Vallejos, C. A., Richardson, S. & Marioni, J. C. Beyond comparisons of means: understanding changes in gene expression at the single-cell level. Genome Biol. 17, 70 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Takemon, Y. et al. Proteomic and transcriptomic profiling reveal different aspects of aging in the kidney. eLife 10, e62585 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ori, A. et al. Integrated transcriptome and proteome analyses reveal organ-specific proteome deterioration in old rats. Cell Syst. 1, 224–237 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kelmer Sacramento, E. et al. Reduced proteasome activity in the aging brain results in ribosome stoichiometry loss and aggregation. Mol. Syst. Biol. 16, e9596 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Schuler, S. C. et al. Extensive remodeling of the extracellular matrix during aging contributes to age-dependent impairments of muscle stem cell functionality. Cell Rep. 35, 109223 (2021).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Some figure elements were created with https://www.biorender.com. We thank J. Bravo and B. Teefy for their insights on the manuscript. P.P.S. is supported by the University of California, San Francisco and the UCSF Bakar Aging Research Institute. B.A.B. is supported by NIGMS R35 GM142395, NIA R01 AG076433, Simons Collaboration on Plasticity in the Aging Brain grant SF811217, Pew Biomedical Scholar Award 00034120 and a Kathleen Gilmore Biology of Aging research award.

Author information

Authors and Affiliations

Authors

Contributions

P.P.S. and B.A.B. conceived and wrote the manuscript together.

Corresponding authors

Correspondence to Param Priya Singh or Bérénice A. Benayoun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Aging thanks Alessandro Ori, Jing-Dong Han and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.P., Benayoun, B.A. Considerations for reproducible omics in aging research. Nat Aging 3, 921–930 (2023). https://doi.org/10.1038/s43587-023-00448-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-023-00448-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing