Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Systematic review and meta-analysis of 10 years of unpredictable chronic stress in zebrafish

Abstract

The zebrafish (Danio rerio) is a model animal that is being increasingly used in neuroscience research. A decade ago, the first study on unpredictable chronic stress (UCS) in zebrafish was published, inspired by protocols established for rodents in the early 1980s. Since then, several studies have been published by different groups, in some cases with conflicting results. Here we conducted a systematic review to identify studies evaluating the effects of UCS in zebrafish and meta-analytically synthetized the data of neurobehavioral outcomes and relevant biomarkers. Literature searches were performed in three databases (PubMed, Scopus and Web of Science) with a two-step screening process based on inclusion/exclusion criteria. The included studies underwent extraction of qualitative and quantitative data, as well as risk-of-bias assessment. Outcomes of included studies (n = 38) were grouped into anxiety/fear-related behavior, locomotor function, social behavior or cortisol level domains. UCS increased anxiety/fear-related behavior and cortisol levels while decreasing locomotor function, but a significant summary effect was not observed for social behavior. Despite including a substantial number of studies, the high heterogeneity and the methodological and reporting problems evidenced in the risk-of-bias analysis made it difficult to assess the internal validity of most studies and the overall validity of the model. Our review thus evidences the need to conduct well-designed experiments to better evaluate the effects of UCS on diverse behavioral patterns displayed by zebrafish.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flowchart diagram of the collection of studies and selection process.
Fig. 2: Co-authorship network analysis of researchers that authored studies implementing the UCS protocol in zebrafish.
Fig. 3: Risk-of-bias assessment of included studies.
Fig. 4: The effect of UCS protocol on anxiety/fear-related behavior of zebrafish.
Fig. 5: The effect of UCS protocol on the locomotor function of zebrafish.
Fig. 6: The effect of UCS protocol on the social behavior of zebrafish.
Fig. 7: The effect of UCS protocol on cortisol levels in zebrafish.
Fig. 8: Publication bias analyses.
Fig. 9: Sensitivity analyses for studies with a high risk of bias.

Similar content being viewed by others

Data availability

All data are available in Open Science Framework (https://osf.io/j2zva/).

References

  1. Katz, R. J. & Hersh, S. Amitriptyline and scopolamine in an animal model of depression. Neurosci. Biobehav. Rev. 5, 265–271 (1981).

    Article  CAS  PubMed  Google Scholar 

  2. Katz, R. J., Roth, K. A. & Carroll, B. J. Acute and chronic stress effects on open field activity in the rat: implications for a model of depression. Neurosci. Biobehav. Rev. 5, 247–251 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. Katz, R. J. Animal model of depression: pharmacological sensitivity of a hedonic deficit. Pharmacol. Biochem. Behav. 16, 965–968 (1982).

    Article  CAS  PubMed  Google Scholar 

  4. Willner, P., Towell, A., Sampson, D., Sophokleous, S. & Muscat, R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology 93, 358–364 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Willner, P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology 134, 319–329 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Willner, P. The chronic mild stress (CMS) model of depression: history, evaluation and usage. Neurobiol. Stress 6, 78–93 (2017).

    Article  PubMed  Google Scholar 

  7. Nollet, M. Models of depression: unpredictable chronic mild stress in mice. Curr. Protoc. 1, e208 (2021).

    Article  PubMed  Google Scholar 

  8. Strekalova, T. & Steinbusch, H. in Mood and Anxiety Related Phenotypes in Mice: Characterization Using Behavioral Tests (ed. Gould, T. D.) 153–176 (Humana Press, 2009).

  9. Willner, P. Reliability of the chronic mild stress model of depression: a user survey. Neurobiol. Stress 6, 68–77 (2017).

    Article  PubMed  Google Scholar 

  10. Antoniuk, S., Bijata, M., Ponimaskin, E. & Wlodarczyk, J. Chronic unpredictable mild stress for modeling depression in rodents: meta-analysis of model reliability. Neurosci. Biobehav. Rev. 99, 101–116 (2019).

    Article  PubMed  Google Scholar 

  11. Piato, Â. L. et al. Unpredictable chronic stress model in zebrafish (Danio rerio): behavioral and physiological responses. Prog. Neuropsychopharmacol. Biol. Psychiatry 35, 561–567 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Maximino, C. et al. Non-mammalian models in behavioral neuroscience: consequences for biological psychiatry. Front. Behav. Neurosci. 9, 233 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Weber-Stadlbauer, U. & Meyer, U. Challenges and opportunities of a-priori and a-posteriori variability in maternal immune activation models. Curr. Opin. Behav. Sci. 28, 119–128 (2019).

    Article  Google Scholar 

  14. Marcon, M. et al. Prevention of unpredictable chronic stress-related phenomena in zebrafish exposed to bromazepam, fluoxetine and nortriptyline. Psychopharmacology 233, 3815–3824 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Bertelli, P. R. et al. Anti-stress effects of the glucagon-like peptide-1 receptor agonist liraglutide in zebrafish. Prog. Neuropsychopharmacol. Biol. Psychiatry 111, 110388 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Golla, A., Østby, H. & Kermen, F. Chronic unpredictable stress induces anxiety-like behaviors in young zebrafish. Sci Rep. 10, 10339 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zimmermann, F. F. et al. Unpredictable chronic stress alters adenosine metabolism in zebrafish brain. Mol. Neurobiol. 53, 2518–2528 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Jayamurali, D. & Govindarajulu, S. N. Impact of chronic unpredictable stress on the expression of apoptotic genes in zebrafish brain. Int. J. Pharm. Sci. Res. 8, 4363–4370 (2017).

    CAS  Google Scholar 

  19. Marcon, M. et al. Enriched environment prevents oxidative stress in zebrafish submitted to unpredictable chronic stress. PeerJ 6, e5136 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Huang, V., Butler, A. A. & Lubin, F. D. Telencephalon transcriptome analysis of chronically stressed adult zebrafish. Sci Rep. 9, 1379 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang, R. et al. A reliable high-throughput screening model for antidepressant. Int. J. Mol. Sci. 22, 9505 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kirsten, K. et al. Acute and chronic stress differently alter the expression of cytokine and neuronal markers genes in zebrafish brain. Stress 24, 107–112 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Demin, K. A. et al. Modulation of behavioral and neurochemical responses of adult zebrafish by fluoxetine, eicosapentaenoic acid and lipopolysaccharide in the prolonged chronic unpredictable stress model. Sci Rep. 11, 14289 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Extracted data + meta-analysis templates. Open Science Framework https://osf.io/pbhy4 (2023).

  25. Individualized scores for risk of bias and reporting quality - updated version. Open Science Framework https://osf.io/gav7p (2023).

  26. Kompagne, H. et al. Chronic mild stress generates clear depressive but ambiguous anxiety-like behavior in rats. Behav. Brain Res. 193, 311–314 (2008).

    Article  PubMed  Google Scholar 

  27. Cox, B. M., Alsawah, F., McNeill, P. C., Galloway, M. P. & Perrine, S. A. Neurochemical, hormonal, and behavioral effects of chronic unpredictable stress in the rat. Behav. Brain Res. 220, 106–111 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhu, S., Shi, R., Wang, J., Wang, J.-F. & Li, X.-M. Unpredictable chronic mild stress not chronic restraint stress induces depressive behaviors in mice. NeuroReport 25, 1151–1155 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Kumar, B., Kuhad, A. & Chopra, K. Neuropsychopharmacological effect of sesamol in unpredictable chronic mild stress model of depression: behavioral and biochemical evidences. Psychopharmacology 214, 819–828 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Sequeira-Cordero, A., Salas-Bastos, A., Fornaguera, J. & Brenes, J. C. Behavioral characterisation of chronic unpredictable stress based on ethologically relevant paradigms in rats. Sci. Rep. 9, 17403 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boxelaere van, M., Clements, J., Callaerts, P., D’Hooge, R. & Callaerts-Vegh, Z. Unpredictable chronic mild stress differentially impairs social and contextual discrimination learning in two inbred mouse strains. PLoS ONE 12, e0188537 (2017).

    Article  Google Scholar 

  32. Lages, Y. V. M., Rossi, A. D., Krahe, T. E. & Landeira-Fernandez, J. Effect of chronic unpredictable mild stress on the expression profile of serotonin receptors in rats and mice: a meta-analysis. Neurosci. Biobehav. Rev. 124, 78–88 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Rambo, C. L. et al. Gender differences in aggression and cortisol levels in zebrafish subjected to unpredictable chronic stress. Physiol. Behav. 171, 50–54 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Palucha-Poniewiera, A., Podkowa, K., Rafalo-Ulinska, A., Branski, P. & Burnat, G. The influence of the duration of chronic unpredictable mild stress on the behavioral responses of C57BL/6J mice. Behav. Pharmacol. 31, 574–582 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Fontana, B. D., Gibbon, A. J., Cleal, M., Norton, W. H. J. & Parker, M. O. Chronic unpredictable early-life stress (CUELS) protocol: early-life stress changes anxiety levels of adult zebrafish. Prog. Neuropsychopharmacol. Biol. Psychiatry 108, 110087 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Bosch, K. et al. Repeated testing modulates chronic unpredictable mild stress effects in male rats. Behav. Brain Res. 432, 113960 (2022).

    Article  PubMed  Google Scholar 

  37. Jankord, R. et al. Stress vulnerability during adolescent development in rats. Endocrinology 152, 629–638 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Sert Du, N. P. et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 18, e3000410 (2020).

    Article  Google Scholar 

  39. Baker, D., Lidster, K., Sottomayor, A. & Amor, S. Two years later: journals are not yet enforcing the ARRIVE guidelines on reporting standards for pre-clinical animal studies. PLoS Biol. 12, e1001756 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Macleod, M. R. et al. Risk of bias in reports of in vivo research: a focus for improvement. PLoS Biol. 13, e1002273 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Samsa, G. & Samsa, L. A guide to reproducibility in preclinical research. Acad. Med. 94, 47–52 (2019).

    Article  PubMed  Google Scholar 

  42. Gerlai, R. Reproducibility and replicability in zebrafish behavioral neuroscience research. Pharmacol. Biochem. Behav. 178, 30–38 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Worp van der, H. B. et al. Can animal models of disease reliably inform human studies? PLoS Med. 7, e1000245 (2010).

    Article  Google Scholar 

  44. Chakravarty, S. et al. Chronic unpredictable stress (CUS)-induced anxiety and related mood disorders in a zebrafish model: altered brain proteome profile implicates mitochondrial dysfunction. PLoS ONE 8, e63302 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Manuel, R. et al. Unpredictable chronic stress decreases inhibitory avoidance learning in Tuebingen long-fin zebrafish: stronger effects in the resting phase than in the active phase. J. Exp. Biol. 217, 3919–3928 (2014).

    PubMed  Google Scholar 

  46. Pavlidis, M., Theodoridi, A. & Tsalafouta, A. Neuroendocrine regulation of the stress response in adult zebrafish, Danio rerio. Prog. Neuropsychopharmacol. Biol. Psychiatry 60, 121–131 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Davis, D. J. et al. Lactobacillus plantarum attenuates anxiety-related behavior and protects against stress-induced dysbiosis in adult zebrafish. Sci. Rep. 6, 33726 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Benneh, C. K. et al. Maerua angolensis stem bark extract reverses anxiety and related behaviors in zebrafish—involvement of GABAergic and 5-HT systems. J. Ethnopharmacol. 207, 129–145 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Fulcher, N., Tran, S., Shams, S., Chatterjee, D. & Gerlai, R. Neurochemical and behavioral responses to unpredictable chronic mild stress following developmental isolation: the zebrafish as a model for major depression. Zebrafish 14, 23–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Grzelak, A. K. et al. Stress leukogram induced by acute and chronic stress in zebrafish (Danio rerio). Comp. Med. 67, 263–269 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. dos Santos Sampaio, T. I. et al. Leaves of Spondias mombin L. a traditional anxiolytic and antidepressant: pharmacological evaluation on zebrafish (Danio rerio). J. Ethnopharmacol. 224, 563–578 (2018).

    Article  PubMed  Google Scholar 

  52. Marcon, M. et al. Environmental enrichment modulates the response to chronic stress in zebrafish. J. Exp. Biol. 221, jeb176735 (2018).

    Article  PubMed  Google Scholar 

  53. Reddy, R. G. et al. Fellutamide B synthetic path intermediates with in vitro neuroactive function shows mood-elevating effect in stress-induced zebrafish model. ACS Omega 3, 10534–10544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Song, C. et al. Modeling consequences of prolonged strong unpredictable stress in zebrafish: complex effects on behavior and physiology. Prog. Neuropsychopharmacol. Biol. Psychiatry 81, 384–394 (2018).

    Article  PubMed  Google Scholar 

  55. Costa de Melo, N. et al. Anxiolytic and antidepressant effects of the hydroethanolic extract from the leaves of Aloysia polystachya (Griseb.) Moldenke: a study on zebrafish (Danio rerio). Pharmaceuticals 12, 106 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Marcon, M. et al. Acetyl-l-carnitine as a putative candidate for the treatment of stress-related psychiatric disorders: novel evidence from a zebrafish model. Neuropharmacology 150, 145–152 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Mocelin, R. et al. N-acetylcysteine reverses anxiety and oxidative damage induced by unpredictable chronic stress in zebrafish. Mol. Neurobiol. 56, 1188–1195 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Reddy, R. G. et al. Crafting carbazole-based vorinostat and tubastatin-A-like histone deacetylase (HDAC) inhibitors with potent in vitro and in vivo neuroactive functions. ACS Omega 4, 17295–17300 (2019).

    Article  Google Scholar 

  59. Demin, K. A. et al. Understanding complex dynamics of behavioral, neurochemical and transcriptomic changes induced by prolonged chronic unpredictable stress in zebrafish. Sci Rep. 10, 19981 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. O'Daniel, M. P. & Petrunich-Rutherford, M. L. Effects of chronic prazosin, an α-1 adrenergic antagonist, on anxiety-like behavior and cortisol levels in a chronic unpredictable stress model in zebrafish (Danio rerio). PeerJ 8, e8472 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Thomson, J. S. et al. Acute and chronic stress prevents responses to pain in zebrafish: evidence for stress-induced analgesia. J. Exp. Biol. 223, jeb224527 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Biney, R. P., Benneh, C. K., Adongo, D. W., Ameyaw, E. O. & Woode, E. Evidence of an antidepressant-like effect of xylopic acid mediated by serotonergic mechanisms. Psychopharmacology 238, 2105–2120 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Chen, B. et al. Study on improving effect of oyster hydrolysate on depressive behavior of zebrafish under chronic unpredictable mild stress. Shipin Kexue Jishu Xuebao 39, 55–63 (2021).

    Google Scholar 

  64. Fontana, B. D., Cleal, M., Norton, W. H. J. & Parker, M. O. The impact of chronic unpredictable early-life stress (CUELS) on boldness and stress-reactivity: differential effects of stress duration and context of testing. Physiol. Behav. 240, 113526 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Fontana, B. D. et al. Moderate early life stress improves adult zebrafish (Danio rerio) working memory but does not affect social and anxiety-like responses. Dev. Psychobiol. 63, 54–64 (2021).

    Article  PubMed  Google Scholar 

  66. Reddy, B. R. et al. Proteome profile of telencephalon associates attenuated neurogenesis with chronic stress induced mood disorder phenotypes in zebrafish model. Pharmacol. Biochem. Behav. 204, 173170 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Rosdy, M. S., Rofiee, M. S., Samsulrizal, N., Salleh, M. Z. & Teh, L. K. Understanding the effects of Moringa oleifera in chronic unpredictable stressed zebrafish using metabolomics analysis. J. Ethnopharmacol. 278, 114290 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Shams, S., Khan, A. & Gerlai, R. Early social deprivation does not affect cortisol response to acute and chronic stress in zebrafish. Stress 24, 273–281 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Gallas-Lopes, M. et al. Unpredictable chronic stress in zebrafish: a systematic review. Open Science Framework https://doi.org/10.17605/OSF.IO/9RVYN (2021).

  70. Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Brit. Med. J. 372, n71 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ouzzani, M., Hammady, H., Fedorowicz, Z. & Elmagarmid, A. Rayyan—a web and mobile app for systematic reviews. Syst. Rev. 5, 210 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Unpredictable chronic stress in zebrafish: a systematic review. Open Science Framework https://osf.io/j2zva/ (2023).

  73. Rohatgi, A. WebPlotDigitizer. Automeris version 4.5 https://automeris.io/WebPlotDigitizer (2021).

  74. van Eck, N. J. & Waltman, L. in Advances in Data Analysis (eds Decker, R. & Lenz, H.-J.) 299–306 (Springer, 2007).

  75. van Eck, N. J. & Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84, 523–538 (2010).

    Article  PubMed  Google Scholar 

  76. Hooijmans, C. R. et al. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 14, 43 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Landis, S. C. et al. A call for transparent reporting to optimize the predictive value of preclinical research. Nature 490, 187–191 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Risk of bias assessment guide for reviewers. Open Science Framework https://osf.io/sdpwb (2023).

  79. McGuinness, L. A. & Higgins, J. P. T. Risk-of-bias VISualization (robvis): an R package and Shiny web app for visualizing risk-of-bias assessments. Res. Synth. Methods 12, 55–61 (2021).

    Article  PubMed  Google Scholar 

  80. Ranking of tests and outcomes. Open Science Framework https://osf.io/rvn8b (2023).

  81. Vesterinen, H. M. et al. Meta-analysis of data from animal studies: a practical guide. J. Neurosci. Methods 221, 92–102 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Balduzzi, S., Rücker, G. & Schwarzer, G. How to perform a meta-analysis with R: a practical tutorial. Evid. Based Ment. Health 22, 153–160 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. meta. R Project version 6.0-0 https://cran.r-project.org/package=meta (2022).

  84. Wilkinson, L. ggplot2: elegant graphics for data analysis by WICKHAM, H. Biometrics 67, 678–679 (2011).

    Article  Google Scholar 

  85. Higgins, J. P. T. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002).

    Article  PubMed  Google Scholar 

  86. Cochran, W. G. Some methods for strengthening the common χ2 tests. Biometrics 10, 417–451 (1954).

    Article  Google Scholar 

  87. Viechtbauer, W. Bias and efficiency of meta-analytic variance estimators in the random-effects model. J. Educ. Behav. Stat. 30, 261–293 (2005).

    Article  Google Scholar 

  88. Veroniki, A. A. et al. Methods to estimate the between‐study variance and its uncertainty in meta‐analysis. Res. Synth. Methods 7, 55–79 (2016).

    Article  PubMed  Google Scholar 

  89. Knapp, G. & Hartung, J. Improved tests for a random effects meta-regression with a single covariate. Stat. Med. 22, 2693–2710 (2003).

    Article  PubMed  Google Scholar 

  90. Higgins, J. P. et al. Cochrane Handbook for Systematic Reviews of Interventions (John Wiley & Sons, 2019).

  91. Richardson, M., Garner, P. & Donegan, S. Interpretation of subgroup analyses in systematic reviews: a tutorial. Clin. Epidemiol. Glob. Health 7, 192–198 (2019).

    Article  Google Scholar 

  92. Duval, S. & Tweedie, R. Trim and fill: a simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56, 455–463 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Egger, M., Smith, G. D., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. Brit. Med. J. 315, 629–634 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Miller, R. G. The jackknife—a review. Biometrika 61, 1–15 (1974).

    Google Scholar 

Download references

Acknowledgements

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, proc. 303343/2020-6), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES), and Pró-Reitoria de Pesquisa (PROPESQ) at Universidade Federal do Rio Grande do Sul (UFRGS) for funding and support.

Author information

Authors and Affiliations

Authors

Contributions

M.G.-L., A.P. and A.P.H. conceived and designed the project. M.G.-L. and A.P.H. curated acquired data and administrated the project. A.P.H. supervised the project. M.G.-L., A.C.P. and A.P.H. collaborated on the formal analysis and data visualization. M.G.-L., L.M.B., R.B., A.P. and A.P.H. contributed to the investigation and methodology. M.G.-L. drafted the article. L.M.B., R.B., A.C.P., A.P. and A.P.H. provided critical revisions of the article.

Corresponding author

Correspondence to Ana P. Herrmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Lab Animal thanks Sumana Chakravarty, Torsten Rackoll and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallas-Lopes, M., Bastos, L.M., Benvenutti, R. et al. Systematic review and meta-analysis of 10 years of unpredictable chronic stress in zebrafish. Lab Anim 52, 229–246 (2023). https://doi.org/10.1038/s41684-023-01239-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41684-023-01239-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing