Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A systematic review of the impact of environmental enrichment in zebrafish

Abstract

Environmental enrichment (EE) consists of a series of interventions carried out in the home environment to promote greater exposure to sensory stimuli and mimic the natural habitat of laboratory-housed animals, providing environments closer to those found in nature. Some studies have shown the positive effects of EE in zebrafish housed in a laboratory environment. However, this evidence is still recent and accompanied by contradictory results. Furthermore, there is great variability in the protocols applied and in the conditions of the tests, tanks and materials used to generate an enriched environment. This substantial variability can bring many uncertainties to the development of future studies and hinder the reproducibility and replicability of research. Here, in this context, we carried out a systematic review of the literature, aiming to provide an overview of the EE protocols used in zebrafish research. The literature search was performed in PubMed, Scopus and Web of Science and the studies were selected on the basis of predefined inclusion/exclusion criteria. A total of 901 articles were identified in the databases, and 27 of those studies were included in this review. We conducted data extraction and risk-of-bias analysis in the included studies. Among these studies, the effect of EE was evaluated in two different ways: (1) for animal welfare and (2) as an intervention to prevent behavioral, biochemical, molecular, developmental and breeding dysfunctions. Although the EE protocols in zebrafish presented a series of experimental differences, the results showed that the benefits of the EE for zebrafish were consistent. According to the results described here, the use of EE in the zebrafish home tank improves welfare and may reduce sources of bias in scientific research. However, it is still necessary to develop standardized protocols to improve the application of EE in scientific studies using zebrafish.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flowchart diagram of study screening and selection process.
Fig. 2: Overview of the publications that report the use of EE in zebrafish.
Fig. 3: Co-authorship network analysis of researchers that authored studies implementing EE in research with zebrafish.
Fig. 4: Materials used in EE protocols.
Fig. 5: Risk-of-bias assessment of included studies.

Similar content being viewed by others

Data availability

Supporting data is available in Open Science Framework (https://osf.io/2gdey/).

References

  1. Ellenbroek, B. & Youn, J. Rodent models in neuroscience research: is it a rat race? Dis. Model. Mech. 9, 1079–1087 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dawson, T. M., Golde, T. E. & Lagier-Tourenne, C. Animal models of neurodegenerative diseases. Nat. Neurosci. 21, 1370–1379 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Spence, R., Gerlach, G., Lawrence, C. & Smith, C. The behaviour and ecology of the zebrafish, Danio rerio. Biol. Rev. 83, 13–34 (2008).

    Article  Google Scholar 

  4. Kalueff, A. V., Stewart, A. M. & Gerlai, R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol. Sci. 35, 63–75 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stewart, A. M., Braubach, O., Spitsbergen, J., Gerlai, R. & Kalueff, A. V. Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci. 37, 264–278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee, C. J., Paull, G. C. & Tyler, C. R. Improving zebrafish laboratory welfare and scientific research through understanding their natural history. Biol. Rev. 97, 1038–1056 (2022).

    Article  PubMed  Google Scholar 

  7. Sert, N. Pdu et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 18, e3000410 (2020).

    Article  Google Scholar 

  8. Kempermann, G. Environmental enrichment, new neurons and the neurobiology of individuality. Nat. Rev. Neurosci. 20, 235–245 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Yerkes, R. M. Almost Human (Century Company, 1925).

  10. Hancocks, D. in Third International Symposium on Zoo Design and Construction 166–173 (Whitley Wildlife Trust, 1980).

  11. Hutchins, M., Hancocks, D. & Crockett, C. Naturalistic solutions to the behavioral problems of captive animals. Zool. Gart. 54, 28–42 (1984).

    Google Scholar 

  12. Beaver, B. V. Environmental enrichment for laboratory animals. ILAR J. 31, 5–11 (1989).

    Article  Google Scholar 

  13. Nithianantharajah, J. & Hannan, A. J. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat. Rev. Neurosci. 7, 697–709 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. von Krogh, K., Sørensen, C., Nilsson, G. E. & Øverli, Ø. Forebrain cell proliferation, behavior, and physiology of zebrafish, Danio rerio, kept in enriched or barren environments. Physiol. Behav. 101, 32–39 (2010).

    Article  Google Scholar 

  15. DePasquale, C., Neuberger, T., Hirrlinger, A. M. & Braithwaite, V. A. The influence of complex and threatening environments in early life on brain size and behaviour. Proc. R. Soc. B 283, 20152564 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hirase, H. & Shinohara, Y. Transformation of cortical and hippocampal neural circuit by environmental enrichment. Neuroscience 280, 282–298 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Mahati, K., Bhagya, V., Christofer, T., Sneha, A. & Shankaranarayana Rao, B. S. Enriched environment ameliorates depression-induced cognitive deficits and restores abnormal hippocampal synaptic plasticity. Neurobiol. Learn. Mem. 134, 379–391 (2016).

    Article  PubMed  Google Scholar 

  18. Zhang, T.-Y. et al. Environmental enrichment increases transcriptional and epigenetic differentiation between mouse dorsal and ventral dentate gyrus. Nat. Commun. 9, 298 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hegde, A., Suresh, S. & Mitra, R. Early-life short-term environmental enrichment counteracts the effects of stress on anxiety-like behavior, brain-derived neurotrophic factor and nuclear translocation of glucocorticoid receptors in the basolateral amygdala. Sci. Rep. 10, 14053 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang, H. et al. Effects of enriched environment on depression and anxiety-like behavior induced by early life stress: a comparison between different periods. Behav. Brain Res. 411, 113389 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Jha, S., Dong, B. & Sakata, K. Enriched environment treatment reverses depression-like behavior and restores reduced hippocampal neurogenesis and protein levels of brain-derived neurotrophic factor in mice lacking its expression through promoter IV. Transl. Psychiatry 1, e40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Seong, H.-H., Park, J.-M. & Kim, Y.-J. Antidepressive effects of environmental enrichment in chronic stress–induced depression in rats. Biol. Res. Nurs. 20, 40–48 (2018).

    Article  PubMed  Google Scholar 

  23. Griñán-Ferré, C. et al. Environmental enrichment improves cognitive deficits, AD hallmarks and epigenetic alterations presented in 5xFAD mouse model. Front. Cell. Neurosci. 12, 224 (2018).

    Article  PubMed Central  Google Scholar 

  24. Jankowsky, J. L. et al. Environmental enrichment mitigates cognitive deficits in a mouse model of Alzheimer’s disease. J. Neurosci. 25, 5217–5224 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seo, J. H. et al. Environmental enrichment attenuates oxidative stress and alters detoxifying enzymes in an A53T α-synuclein transgenic mouse model of Parkinson’s disease. Antioxidants 9, 928 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wassouf, Z. et al. Environmental enrichment prevents transcriptional disturbances induced by alpha-synuclein overexpression. Front. Cell. Neurosci. 12, 112 (2018).

    Article  PubMed Central  Google Scholar 

  27. DePasquale, C., Fettrow, S., Sturgill, J. & Braithwaite, V. A. The impact of flow and physical enrichment on preferences in zebrafish. Appl. Anim. Behav. Sci. 215, 77–81 (2019).

    Article  Google Scholar 

  28. Kistler, C., Hegglin, D., Würbel, H. & König, B. Preference for structured environment in zebrafish (Danio rerio) and checker barbs (Puntius oligolepis). Appl. Anim. Behav. Sci. 135, 318–327 (2011).

    Article  Google Scholar 

  29. Tan, S. L. T., Handasyde, K. A., Rault, J.-L. & Mendl, M. Insensitivity to reward shifts in zebrafish (Danio rerio) and implications for assessing affective states. Anim. Cogn. 23, 87–100 (2020).

    Article  PubMed  Google Scholar 

  30. Maia, C. M., Volpato, G. L. & Braithwaite, V. A. A psychological aversive condition does not change individual zebrafish preference for background color or artificial plant enrichments. J. Appl. Anim. Welf. Sci. 25, 427–438 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Schroeder, P., Jones, S., Young, I. S. & Sneddon, L. U. What do zebrafish want? Impact of social grouping, dominance and gender on preference for enrichment. Lab. Anim. 48, 328–337 (2014).

    Article  PubMed  Google Scholar 

  32. Jones, N. A. R., Spence, R., Jones, F. A. M. & Spence-Jones, H. C. Shade as enrichment: testing preferences for shelter in two model fish species. J. Fish Biol. 95, 1161–1165 (2019).

    Article  PubMed  Google Scholar 

  33. Krueger, L. D. et al. Enrichment preferences of singly housed zebrafish (Danio rerio). J. Am. Assoc. Lab. Anim. Sci. 59, 148–155 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Keck, V. A. et al. Effects of habitat complexity on pair-housed zebrafish. J. Am. Assoc. Lab. Anim. Sci. 54, 378–383 (2015).

    PubMed Central  Google Scholar 

  35. Spence, R., Magurran, A. E. & Smith, C. Spatial cognition in zebrafish: the role of strain and rearing environment. Anim. Cogn. 14, 607–612 (2011).

    Article  PubMed  Google Scholar 

  36. Antunes, M. & Biala, G. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn. Process. 13, 93–110 (2012).

    Article  CAS  Google Scholar 

  37. DePasquale, C. et al. The influence of an enriched environment in enhancing recognition memory in zebrafish (Danio rerio). Front. Vet. Sci. 8, 749746 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gatto, E., Bruzzone, M., Maschio, M. D. & Dadda, M. Effects of environmental enrichment on recognition memory in zebrafish larvae. Appl. Anim. Behav. Sci. 247, 105552 (2022).

    Article  Google Scholar 

  39. Gerlai, R. Social behavior of zebrafish: from synthetic images to biological mechanisms of shoaling. J. Neurosci. Methods 234, 59–65 (2014).

    Article  PubMed  Google Scholar 

  40. Suriyampola, P. S. et al. Zebrafish social behavior in the wild. Zebrafish 13, 1–8 (2016).

    Article  PubMed  Google Scholar 

  41. Sykes, D. J., Suriyampola, P. S. & Martins, E. P. Recent experience impacts social behavior in a novel context by adult zebrafish (Danio rerio). PLoS ONE 13, e0204994 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Levin, E. D., Bencan, Z. & Cerutti, D. T. Anxiolytic effects of nicotine in zebrafish. Physiol. Behav. 90, 54–58 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Lee, C. J., Paull, G. C. & Tyler, C. R. Effects of environmental enrichment on survivorship, growth, sex ratio and behaviour in laboratory maintained zebrafish Danio rerio. J. Fish Biol. 94, 86–95 (2019).

    Article  Google Scholar 

  44. dos Santos, T. G., Mussulini, B. H. M., Frangipani, L. A. & de Oliveira, D. L. Differential impact of shorter and longer periods of environmental enrichment on adult zebrafish exploratory activity (Danio rerio) in the novel tank paradigm. Behav. Processes 181, 104278 (2020).

    Article  PubMed  Google Scholar 

  45. Gatto, E. et al. Environmental enrichment decreases anxiety-like behavior in zebrafish larvae. Dev. Psychobiol. 64, e22255 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Teles, M. C. & Oliveira, R. F. in Zebrafish: Methods and Protocols (eds. Kawakami, K., Patton, E. E. & Orger, M.) 293–305 (Springer, 2016).

  47. Woodward, M. A., Winder, L. A. & Watt, P. J. Enrichment increases aggression in zebrafish. Fishes 4, 22 (2019).

    Article  Google Scholar 

  48. Wafer, L. N. et al. Effects of environmental enrichment on the fertility and fecundity of zebrafish (Danio rerio). J. Am. Assoc. Lab. Anim. Sci. 55, 291–294 (2016).

    PubMed  PubMed Central  Google Scholar 

  49. Collymore, C., Tolwani, R. J. & Rasmussen, S. The behavioral effects of single housing and environmental enrichment on adult zebrafish (Danio rerio). J. Am. Assoc. Lab. Anim. Sci. 54, 280–285 (2015).

    PubMed  PubMed Central  Google Scholar 

  50. Marcon, M. et al. Environmental enrichment modulates the response to chronic stress in zebrafish. J. Exp. Biol. 221, jeb176735 (2018).

    Article  PubMed  Google Scholar 

  51. Menezes, F. P., Amorim, R. R., Silva, P. F. & Luchiari, A. C. Alcohol exposure and environmental enrichment effects on contextual fear conditioning in zebrafish. Behav. Processes 197, 104608 (2022).

    Article  PubMed  Google Scholar 

  52. Maximino, C., da Silva, A. W. B., Gouveia, A. & Herculano, A. M. Pharmacological analysis of zebrafish (Danio rerio) scototaxis. Prog. Neuropsychopharmacol. Biol. Psychiatry 35, 624–631 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Sackerman, J. et al. Zebrafish behavior in novel environments: effects of acute exposure to anxiolytic compounds and choice of Danio rerio Line. Int. J. Comp. Psychol. 23, 43–61 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Manuel, R. et al. The effects of environmental enrichment and age-related differences on inhibitory avoidance in zebrafish (Danio rerio Hamilton). Zebrafish 12, 152–165 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Atucha, E. & Roozendaal, B. The inhibitory avoidance discrimination task to investigate accuracy of memory. Front. Behav. Neurosci. 9, 60 (2015).

    Article  PubMed Central  Google Scholar 

  56. Small, W. S. An experimental study of the mental processes of the rat. Am. J. Psychol. 11, 133–165 (1900).

    Article  Google Scholar 

  57. Benvenutti, R. et al. Swimming in the maze: an overview of maze apparatuses and protocols to assess zebrafish behavior. Neurosci. Biobehav. Rev. 127, 761–778 (2021).

    Article  PubMed  Google Scholar 

  58. Giacomini, A. C. V. V. et al. Environmental and pharmacological manipulations blunt the stress response of zebrafish in a similar manner. Sci. Rep. 6, 28986 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  59. Estes, J. M., Altemara, M. L., Crim, M. J., Fletcher, C. A. & Whitaker, J. W. Behavioral and reproductive effects of environmental enrichment and Pseudoloma neurophilia infection on adult zebrafish (Danio rerio). J. Am. Assoc. Lab. Anim. Sci. 60, 249–258 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Marcon, M. et al. Enriched environment prevents oxidative stress in zebrafish submitted to unpredictable chronic stress. PeerJ 6, e5136 (2018).

    Article  PubMed Central  Google Scholar 

  61. Strzalka, W. & Ziemienowicz, A. Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. Ann. Bot. 107, 1127–1140 (2011).

    Article  CAS  Google Scholar 

  62. Seki, T. Expression patterns of immature neuronal markers PSA-NCAM, CRMP-4 and NeuroD in the hippocampus of young adult and aged rodents. J. Neurosci. Res. 70, 327–334 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Smith, S. M. et al. Cocaine- and amphetamine-regulated transcript activates the hypothalamic–pituitary–adrenal axis through a corticotropin-releasing factor receptor-dependent mechanism. Endocrinology 145, 5202–5209 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Finsterwald, C. & Alberini, C. M. Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: from adaptive responses to psychopathologies. Neurobiol. Learn. Mem. 112, 17–29 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Karoglu-Eravsar, E. T., Tuz-Sasik, M. U. & Adams, M. M. Environmental enrichment applied with sensory components prevents age-related decline in synaptic dynamics: evidence from the zebrafish model organism. Exp. Gerontol. 149, 111346 (2021).

    Article  Google Scholar 

  66. Masliah, E., Terry, R. D., DeTeresa, R. M. & Hansen, L. A. Immunohistochemical quantification of the synapse-related protein synaptophysin in Alzheimer disease. Neurosci. Lett. 103, 234–239 (1989).

    Article  CAS  PubMed  Google Scholar 

  67. Vreugdenhil, E. et al. Doublecortin-like, a microtubule-associated protein expressed in radial glia, is crucial for neuronal precursor division and radial process stability. Eur. J. Neurosci. 25, 635–648 (2007).

    Article  PubMed  Google Scholar 

  68. Groeneweg, F. L., Trattnig, C., Kuhse, J., Nawrotzki, R. A. & Kirsch, J. Gephyrin: a key regulatory protein of inhibitory synapses and beyond. Histochem. Cell Biol. 150, 489–508 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Parichy, D. M. Advancing biology through a deeper understanding of zebrafish ecology and evolution. eLife 4, e05635 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Roy, C. et al. Effects of enrichment type, presentation and social status on enrichment use and behavior of sows—part 2: free access stall feeding. Anim. Open Access J. MDPI 12, 1768 (2022).

    Google Scholar 

  71. Westerfield, M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio) (Univ. Oregon Press, 2007).

  72. Kopp, R., Legler, J. & Legradi, J. Alterations in locomotor activity of feeding zebrafish larvae as a consequence of exposure to different environmental factors. Environ. Sci. Pollut. Res. Int. 25, 4085–4093 (2018).

    Article  PubMed  Google Scholar 

  73. Krylov, V. V., Izvekov, E. I., Pavlova, V. V., Pankova, N. A. & Osipova, E. A. Circadian rhythms in zebrafish (Danio rerio) behaviour and the sources of their variability. Biol. Rev. 96, 785–797 (2021).

    Article  PubMed  Google Scholar 

  74. European Commission. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. J. Eur Union 50, 33–79 (2010).

  75. André, V. et al. Laboratory mouse housing conditions can be improved using common environmental enrichment without compromising data. PLoS Biol. 16, e2005019 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Russell, W. M. S. & Burch, R. L. The principles of humane experimental technique. Med. J. Aust. 1, 500–500 (1960).

    Article  Google Scholar 

  77. Gerlai, R. Reproducibility and replicability in zebrafish behavioral neuroscience research. Pharmacol. Biochem. Behav. 178, 30–38 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Macleod, M. R. et al. Risk of bias in reports of in vivo research: a focus for improvement. PLoS Biol. 13, e1002273 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Br. Med. J. 372, n71 (2021).

    Article  Google Scholar 

  80. Gallas-Lopes, M., Benvenutti, R., Marcon, M. Environmental enrichment strategies for zebrafish: a systematic review. Open Science Framework https://osf.io/2gdey/ (2023).

  81. van Eck, N. J. & Waltman, L. VO in Advances in Data Analysis (eds Decker, R. & Lenz, H.-J.) 299–306 (Springer, 2007).

  82. van Eck, N. J. & Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84, 523–538 (2010).

    Article  PubMed  Google Scholar 

  83. Hooijmans, C. R. et al. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 14, 43 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Fundação de Amparo à Pesquisa do Estado de Minas Gerais, Brazil (FAPEMIG, Proc. APQ-00151-22) and Pró-Reitoria de Pesquisa e Pós-Graduação (PROPPG) at Universidade Federal do Triângulo Mineiro (UFTM) for funding and support. N.I.Z.D. received a fellowship from Fundação de Amparo à Pesquisa do Estado de Minas Gerais. M.G.-L. is recipient of a fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). R.B. is recipient of a fellowship from Irish Research Council (IRS) and Epilepsy Ireland.

Author information

Authors and Affiliations

Authors

Contributions

M.G.-L., R.B. and M.M. conceived and designed the project. M.M. supervised the project. M.G.-L., R.B., N.I.Z.D. and M.M. collaborated on data acquisition and visualization. M.G.-L., R.B. and M.M. contributed to the investigation and methodology. M.G.-L., R.B. and M.M. drafted the original article.

Corresponding author

Correspondence to Matheus Marcon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Lab Animal thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallas-Lopes, M., Benvenutti, R., Donzelli, N.I.Z. et al. A systematic review of the impact of environmental enrichment in zebrafish. Lab Anim 52, 332–343 (2023). https://doi.org/10.1038/s41684-023-01288-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41684-023-01288-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing