Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Transkingdom Network Analysis (TkNA): a systems framework for inferring causal factors underlying host–microbiota and other multi-omic interactions

Abstract

We present Transkingdom Network Analysis (TkNA), a unique causal-inference analytical framework that offers a holistic view of biological systems by integrating data from multiple cohorts and diverse omics types. TkNA helps to decipher key players and mechanisms governing host–microbiota (or any multi-omic data) interactions in specific conditions or diseases. TkNA reconstructs a network that represents a statistical model capturing the complex relationships between different omics in the biological system. It identifies robust and reproducible patterns of fold change direction and correlation sign across several cohorts to select differential features and their per-group correlations. The framework then uses causality-sensitive metrics, statistical thresholds and topological criteria to determine the final edges forming the transkingdom network. With the subsequent network’s topological features, TkNA identifies nodes controlling a given subnetwork or governing communication between kingdoms and/or subnetworks. The computational time for the millions of correlations necessary for network reconstruction in TkNA typically takes only a few minutes, varying with the study design. Unlike most other multi-omics approaches that find only associations, TkNA focuses on establishing causality while accounting for the complex structure of multi-omic data. It achieves this without requiring huge sample sizes. Moreover, the TkNA protocol is user friendly, requiring minimal installation and basic familiarity with Unix. Researchers can access the TkNA software at https://github.com/CAnBioNet/TkNA/.

Key points

  • Transkingdom Network Analysis (TkNA) is a unique analytical framework for inferring causal factors underlying host–microbiota and other multi-omic interactions, by integrating data from multiple cohorts and diverse omics types.

  • Unlike most other multi-omics approaches that find only associations, TkNA focuses on establishing causality while accounting for the complex structure of multi-omic data, which it achieves without requiring huge sample sizes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flowchart of the TkNA pipeline.
Fig. 2: The TkNA pipeline is used in a cyclical manner.
Fig. 3: Example output plots produced by TkNA.
Fig. 4: Example configurations of experimental classes for meta-analysis of edges.
Fig. 5: The structure of the TkNA repository from GitHub.
Fig. 6: Example metadata and configuration (config) .json files.
Fig. 7: Schematic of how a basic network is reconstructed from two independent datasets.
Fig. 8: A comparison of network metrics across previously published networks.
Fig. 9: An example of clusters and regulatory nodes that may be identified in a network.
Fig. 10: Examples of good and bad networks.

Similar content being viewed by others

Data availability

Raw data used for the analysis that generated Fig. 3 and Supplementary Fig. 2 are available in the supporting primary research article, ref. 3. A graphical user interface version of TkNA is also available at https://bioinfo-abcc.ncifcrf.gov/TkNA.

Code availability

The TkNA pipeline is publicly available at https://github.com/CAnBioNet/TkNA. The code in this protocol has been peer reviewed.

References

  1. Morgun, A. et al. Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. Gut 64, 1732–1743 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Rodrigues, R. R. et al. Antibiotic-induced alterations in gut microbiota are associated with changes in glucose metabolism in healthy mice. Front. Microbiol. 8, 2306 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rodrigues, R. R. et al. Transkingdom interactions between Lactobacilli and hepatic mitochondria attenuate western diet-induced diabetes. Nat. Commun. 12, 101 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  4. Shulzhenko, N. et al. CVID enteropathy is characterized by exceeding low mucosal IgA levels and interferon-driven inflammation possibly related to the presence of a pathobiont. Clin. Immunol. 197, 139–153 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients. Science 371, 595–602 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  6. Lam, K. C. et al. Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell 184, 5338–5356.e21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McCulloch, J. A. et al. Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1. Nat. Med. 28, 545–556 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Spencer, C. N. et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 374, 1632–1640 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Lam, K. C. et al. Transkingdom network reveals bacterial players associated with cervical cancer gene expression program. PeerJ 6, e5590 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yambartsev, A. et al. Unexpected links reflect the noise in networks. Biol. Direct 11, 1–12 (2016).

    Article  Google Scholar 

  11. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. 2008, P10008 (2008).

    Article  Google Scholar 

  13. Rosvall, M., Axelsson, D. & Bergstrom, C. T. The map equation. Eur. Phys. J. Spec. Top. 178, 13–23 (2009).

    Article  Google Scholar 

  14. Padiadpu, J. et al. Multi-omic network analysis identified betacellulin as a novel target of omega-3 fatty acid attenuation of western diet-induced nonalcoholic steatohepatitis. EMBO Mol. Med. 15, e18367 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Newman, M. E. Assortative mixing in networks. Phys. Rev. Lett. 89, 208701 (2002).

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Borgatti, S. P. The Key Player Problem. Available at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1149843 (2003).

  17. Freeman, L. C. in Social Networks: Critical Concepts in Sociology (ed. Scott, J.) 238–263 (Routledge, 2002).

  18. Dong, X. et al. Reverse enGENEering of regulatory networks from big data: a roadmap for biologists. Bioinform. Biol. Insights 9, 61–74 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Power, J. D., Schlaggar, B. L., Lessov-Schlaggar, C. N. & Petersen, S. E. Evidence for hubs in human functional brain networks. Neuron 79, 798–813 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Li, Z. et al. Microbiota and adipocyte mitochondrial damage in type 2 diabetes are linked by Mmp12+ macrophages. J. Exp. Med. 219, e20220017 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shulzhenko, N. et al. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nat. Med. 17, 1585–1593 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mine, K. L. et al. Gene network reconstruction reveals cell cycle and antiviral genes as major drivers of cervical cancer. Nat. Commun. 4, 1806 (2013).

    Article  PubMed  ADS  Google Scholar 

  23. Greer, R. L. et al. Akkermansia muciniphila mediates negative effects of IFNgamma on glucose metabolism. Nat. Commun. 7, 13329 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Kahalehili, H. M. et al. Dietary indole-3-carbinol activates AhR in the gut, alters Th17-microbe interactions, and exacerbates insulitis in NOD mice. Front. Immunol. 11, 606441 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Balduzzi, S., Rücker, G. & Schwarzer, G. How to perform a meta-analysis with R: a practical tutorial. BMJ Ment. Health 22, 153–160 (2019).

    Google Scholar 

  26. Schwarzer, G., Carpenter, J. R. & Rücker, G. Meta-analysis with R (Springer, 2015).

  27. Sera, F., Armstrong, B., Blangiardo, M. & Gasparrini, A. An extended mixed‐effects framework for meta‐analysis. Stat. Med. 38, 5429–5444 (2019).

    Article  MathSciNet  PubMed  Google Scholar 

  28. Rohart, F., Gautier, B., Singh, A. & Lê Cao, K.-A. mixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 13, e1005752 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  29. Argelaguet, R. et al. MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data. Genome Biol. 21, 1–17 (2020).

    Article  Google Scholar 

  30. Argelaguet, R. et al. Multi‐Omics Factor Analysis—a framework for unsupervised integration of multi‐omics data sets. Mol. Syst. Biol. 14, e8124 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mo, Q. & Shen, R. iClusterPlus: integrative clustering of multiple genomic data sets. R package version 1.38.0 https://bioconductor.org/packages/iClusterPlus (2023).

  32. Mo, Q. et al. Pattern discovery and cancer gene identification in integrated cancer genomic data. Proc. Natl Acad. Sci. USA 110, 4245–4250 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 23, R89–R98 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Davey Smith, G. & Ebrahim, S. in Biosocial Surveys (National Academies Press, 2008).

  35. Yang, Q., Lin, S. L., Kwok, M. K., Leung, G. M. & Schooling, C. M. The roles of 27 genera of human gut microbiota in ischemic heart disease, type 2 diabetes mellitus, and their risk factors: a Mendelian randomization study. Am. J. Epidemiol. 187, 1916–1922 (2018).

    Article  PubMed  Google Scholar 

  36. Liu, X. et al. Mendelian randomization analyses support causal relationships between blood metabolites and the gut microbiome. Nat. Genet. 54, 52–61 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, C., Hu, J., Blaser, M. J. & Li, H. Estimating and testing the microbial causal mediation effect with high-dimensional and compositional microbiome data. Bioinformatics 36, 347–355 (2020).

    Article  PubMed  Google Scholar 

  38. Cheung, M. W.-L. A guide to conducting a meta-analysis with non-independent effect sizes. Neuropsychol. Rev. 29, 387–396 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. VanderWeele, T. J. Mediation analysis: a practitioner’s guide. Annu. Rev. Public Health 37, 17–32 (2016).

    Article  PubMed  Google Scholar 

  40. Baiocchi, M., Cheng, J. & Small, D. S. Instrumental variable methods for causal inference. Stat. Med. 33, 2297–2340 (2014).

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  41. Skinner, J. et al. Construct and compare gene coexpression networks with DAPfinder and DAPview. BMC Bioinforma. 12, 1–8 (2011).

    Article  Google Scholar 

  42. Thomas, L. D., Vyshenska, D., Shulzhenko, N., Yambartsev, A. & Morgun, A. Differentially correlated genes in co-expression networks control phenotype transitions. F1000Res. 5, 2740 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Braun, R., Cope, L. & Parmigiani, G. Identifying differential correlation in gene/pathway combinations. BMC Bioinforma. 9, 1–17 (2008).

    Article  Google Scholar 

  44. Chunikhina, E. et al. The C-SHIFT algorithm for normalizing covariances. IEEE/ACM Trans. Comput. Biol. Bioinform. 20, 720–730 (2022).

    Article  Google Scholar 

  45. Välikangas, T., Suomi, T. & Elo, L. L. A systematic evaluation of normalization methods in quantitative label-free proteomics. Brief. Bioinform. 19, 1–11 (2018).

    PubMed  Google Scholar 

  46. Zhang, Y. et al. Improvements in metabolic syndrome by xanthohumol derivatives are linked to altered gut microbiota and bile acid metabolism. Mol. Nutr. Food Res. 64, e1900789 (2020).

    Article  PubMed  Google Scholar 

  47. Padiadpu, J. et al. Early transcriptome changes associated with western diet induced NASH in Ldlr−/− mice points to activation of hepatic macrophages and an acute phase response. Front. Nutr. 10, 1147602 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Danelishvili, L. et al. Mycobacterium tuberculosis proteome response to antituberculosis compounds reveals metabolic “escape” pathways that prolong bacterial survival. Antimicrob. Agents Chemother. 61, e00430-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Newman, N. et al. Reducing gut microbiome-driven adipose tissue inflammation alleviates metabolic syndrome. Microbiome 11, 208 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bader, G. D. & Hogue, C. W. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinforma. 4, 1–27 (2003).

    Article  Google Scholar 

  51. Wang, J. et al. ClusterViz: a cytoscape APP for cluster analysis of biological network. IEEE/ACM Trans. Comput. Biol. Bioinform. 12, 815–822 (2014).

    Article  Google Scholar 

  52. Newman, M. Networks (Oxford University Press, 2018).

  53. Zhao, Y. et al. TPM, FPKM, or normalized counts? A comparative study of quantification measures for the analysis of RNA-seq data from the NCI patient-derived models repository. J. Transl. Med. 19, 1–15 (2021).

    Article  CAS  Google Scholar 

  54. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Trapnell, C. et al. Transcript assembly and abundance estimation from RNA-Seq reveals thousands of new transcripts and switching among isoforms. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bolstad, B. M., Irizarry, R. A., Åstrand, M. & Speed, T. P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Yang, Y. H., Dudoit, S., Luu, P. & Speed, T. P. Normalization for cDNA microarry data. In Microarrays: Optical Technologies and Informatics Vol. 4266, 141–152 (SPIE, 2001).

  58. Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, 1–9 (2010).

    Article  Google Scholar 

  59. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).

    Article  Google Scholar 

  60. Gautier, L., Cope, L., Bolstad, B. M. & Irizarry, R. A. affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20, 307–315 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Sanders, H. L. Marine benthic diversity: a comparative study. Am. Nat. 102, 243–282 (1968).

    Article  Google Scholar 

  63. Joseph, N., Paulson, C., Corrada Bravo, H. & Pop, M. Robust methods for differential abundance analysis in marker gene surveys. Nat. Methods 10, 1200–1202 (2013).

    Article  Google Scholar 

  64. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Paulson, J. N., Pop, M. & Bravo, H. C. metagenomeSeq: statistical analysis for sparse high-throughput sequencing. Bioconductor Package 1 https://www.cbcb.umd.edu/software/metagenomeSeq (2013).

  66. Bijlsma, S. et al. Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Anal. Chem. 78, 567–574 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Sysi-Aho, M., Katajamaa, M., Yetukuri, L. & Orešič, M. Normalization method for metabolomics data using optimal selection of multiple internal standards. BMC Bioinforma. 8, 1–17 (2007).

    Article  Google Scholar 

  68. Warrack, B. M. et al. Normalization strategies for metabonomic analysis of urine samples. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 877, 547–552 (2009).

    Article  CAS  Google Scholar 

  69. Saccenti, E. Correlation patterns in experimental data are affected by normalization procedures: consequences for data analysis and network inference. J. Proteome Res. 16, 619–634 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Dieterle, F., Ross, A., Schlotterbeck, G. & Senn, H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal. Chem. 78, 4281–4290 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Wulff, J. E. & Mitchell, M. W. A comparison of various normalization methods for LC/MS metabolomics data. Adv. Biosci. Biotechnol. 9, 339 (2018).

    Article  CAS  Google Scholar 

  72. Karpievitch, Y. V. et al. Normalization of peak intensities in bottom-up MS-based proteomics using singular value decomposition. Bioinformatics 25, 2573–2580 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ernest, B., Gooding, J. R., Campagna, S. R., Saxton, A. M. & Voy, B. H. MetabR: an R script for linear model analysis of quantitative metabolomic data. BMC Res. notes 5, 1–10 (2012).

    Article  Google Scholar 

  74. Karpievitch, Y., Stuart, T. & Mohamed, S. ProteoMM: multi-dataset model-based differential expression proteomics analysis platform. R package version 1 https://bioconductor.org/packages/ProteoMM (2023).

  75. Röst, H. L. et al. OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat. Methods 13, 741–748 (2016).

    Article  PubMed  Google Scholar 

  76. Röst, H. L., Schmitt, U., Aebersold, R. & Malmström, L. pyOpenMS: a Python‐based interface to the OpenMS mass‐spectrometry algorithm library. Proteomics 14, 74–77 (2014).

    Article  PubMed  Google Scholar 

  77. Callister, S. J. et al. Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. J. Proteome Res. 5, 277–286 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Huber, W., Von Heydebreck, A., Sültmann, H., Poustka, A. & Vingron, M. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18, S96–S104 (2002).

    Article  PubMed  Google Scholar 

  79. Graw, S. et al. proteiNorm–a user-friendly tool for normalization and analysis of TMT and label-free protein quantification. ACS Omega 5, 25625–25633 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  81. Lynn, D. J. et al. InnateDB: facilitating systems‐level analyses of the mammalian innate immune response. Mol. Syst. Biol. 4, 218 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  83. Gillespie, M. et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 50, D687–D692 (2022).

    Article  CAS  PubMed  Google Scholar 

  84. Szklarczyk, D. et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49, D605–D612 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Dhariwal, A. et al. MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 45, W180–W188 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Langille, M. G. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pang, Z. et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49, W388–W396 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The funding that supports this work is AI157369 (to A.M.), DK103761 (to N.S.), DK107603 (to A.M.) and BC011153 (to G.T.), NCI/NIH (Contract No. 75N91019D00024 (to J.S. and J.W.)). S.S.P. and M.S.M. were supported by summer fellowships from the College of Pharmacy at Oregon State University. We thank Isaiah Shriver for aiding in testing the code.

Author information

Authors and Affiliations

Authors

Contributions

N.S. and A.M. conceived the original version of TkNA. N.K.N., M.S.M., R.R.R., A.K.D., N.S., G.T., K.B. and A.M. designed the current TkNA framework. N.K.N. and M.S.M. implemented the coding part of the TkNA workflow. R.R.R. and J.P. prepared parts of the TkNA workflow that require additional software. A.M.B., J.W.P. and S.S.P. performed the validation. N.K.N., R.R.R. and A.M.B. prepared the simulated data. R.R.R. prepared the experimental data. N.K.N. and A.M.B. prepared the figures. J.S. and J.W. built the web tool version of TkNA. N.K.N., M.S.M., R.R.R., J.P. and K.B. wrote the paper. A.M.B., J.W.P., S.S.P., J.P., A.K.D., N.S., G.T., K.B. and A.M. edited the paper. N.S., G.T., K.B. and A.M. supervised various aspects of this study.

Corresponding authors

Correspondence to Giorgio Trinchieri, Kevin Brown or Andrey Morgun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Nikita Agarwal, Torgeir Hvidsten and Jayadev Joshi for their contribution to the peer review process.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Morgun, A. et al. Gut 64, 1732–1743 (2015): https://doi.org/10.1136/gutjnl-2014-308820

Rodrigues, R. R. et al. Nat. Commun. 12, 101 (2021): https://doi.org/10.1038/s41467-020-20313-x

Li, Z. et al. J. Exp. Med. 219, e20220017 (2022): https://doi.org/10.1084/jem.20220017

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Newman, N.K., Macovsky, M.S., Rodrigues, R.R. et al. Transkingdom Network Analysis (TkNA): a systems framework for inferring causal factors underlying host–microbiota and other multi-omic interactions. Nat Protoc (2024). https://doi.org/10.1038/s41596-024-00960-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-024-00960-w

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing