Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Isoform-specific RNA structure determination using Nano-DMS-MaP

Abstract

RNA structure determination is essential to understand how RNA carries out its diverse biological functions. In cells, RNA isoforms are readily expressed with partial variations within their sequences due, for example, to alternative splicing, heterogeneity in the transcription start site, RNA processing or differential termination/polyadenylation. Nanopore dimethyl sulfate mutational profiling (Nano-DMS-MaP) is a method for in situ isoform-specific RNA structure determination. Unlike similar methods that rely on short sequencing reads, Nano-DMS-MaP employs nanopore sequencing to resolve the structures of long and highly similar RNA molecules to reveal their previously hidden structural differences. This Protocol describes the development and applications of Nano-DMS-MaP and outlines the main considerations for designing and implementing a successful experiment: from bench to data analysis. In cell probing experiments can be carried out by an experienced molecular biologist in 3–4 d. Data analysis requires good knowledge of command line tools and Python scripts and requires a further 3–5 d.

Key points

  • Nano-DMS-MaP is a method for in situ isoform-specific RNA structure determination. It employs nanopore sequencing to resolve the structures of long and highly similar RNA molecules, revealing previously hidden structural differences.

  • Compared with short-read sequencing, in which it is difficult to uniquely map individual reads to highly similar transcript isoforms, Nano-DMS-MaP uses long-read Nanopore sequencing, enabling unambiguous assignment of reads to transcript isoforms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nano-DMS-MaP workflow.
Fig. 2: Experimental considerations.
Fig. 3: Anticipated results from probing HIV-1 RNA.

Similar content being viewed by others

Data availability

The data used to generate the anticipated results were originally published in ref. 22. All sequencing data are available at Sequence Read Archive (SRP424422, Bioproject ID PRJNA938445).

Code availability

Code used for the Nano-DMS-MaP analysis is accessible via the Smyth lab Github (https://github.com/smyth-lab/Nano-DMS-MaP) and is available for reuse under the Massachusetts Institute of Technology (MIT) License.

References

  1. Vicens, Q. & Kieft, J. S. Thoughts on how to think (and talk) about RNA structure. Proc. Natl Acad. Sci. USA 119, e2112677119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mortimer, S. A., Kidwell, M. A. & Doudna, J. A. Insights into RNA structure and function from genome-wide studies. Nat. Rev. Genet. 15, 469–479 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Spitale, R. C. & Incarnato, D. Probing the dynamic RNA structurome and its functions. Nat. Rev. Genet. 24, 178–196 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Reyes, A. & Huber, W. Alternative start and termination sites of transcription drive most transcript isoform differences across human tissues. Nucleic Acids Res. 46, 582–592 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Shabalina, S. A., Ogurtsov, A. Y., Spiridonov, N. A. & Koonin, E. V. Evolution at protein ends: major contribution of alternative transcription initiation and termination to the transcriptome and proteome diversity in mammals. Nucleic Acids Res. 42, 7132–7144 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ehresmann, C. et al. Probing the structure of RNAs in solution. Nucleic Acids Res. 15, 9109–9128 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mailler, E., Paillart, J.-C. J.-C., Marquet, R., Smyth, R. P. R. P. & Vivet-Boudou, V. The evolution of RNA structural probing methods: from gels to next-generation sequencing. Wiley Interdiscip. Rev. RNA 10, e1518 (2019).

    Article  PubMed  Google Scholar 

  8. Morgan, B. S., Forte, J. E. & Hargrove, A. E. Insights into the development of chemical probes for RNA. Nucleic Acids Res. 46, 8025–8037 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Spitale, R. C. et al. RNA SHAPE analysis in living cells. Nat. Chem. Biol. 9, 18–20 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Merino, E. J., Wilkinson, K. A., Coughlan, J. L. & Weeks, K. M. RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J. Am. Chem. Soc. 127, 4223–4231 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Wilkinson, K. A., Merino, E. J. & Weeks, K. M. RNA SHAPE chemistry reveals nonhierarchical interactions dominate equilibrium structural transitions in tRNA(Asp) transcripts. J. Am. Chem. Soc. 127, 4659–4667 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Lee, B. et al. Comparison of SHAPE reagents for mapping RNA structures inside living cells. RNA 23, 169–174 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Siegfried, N. A., Busan, S., Rice, G. M., Nelson, J. A. E. & Weeks, K. M. RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat. Methods 11, 959–965 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smola, M. J., Calabrese, J. M. & Weeks, K. M. Detection of RNA–protein interactions in living cells with SHAPE. Biochemistry 54, 6867–6875 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. McGinnis, J. L. et al. In-cell SHAPE reveals that free 30S ribosome subunits are in the inactive state. Proc. Natl Acad. Sci. USA 112, 2425–2430 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martin, S., Blankenship, C., Rausch, J. W. & Sztuba-Solinska, J. Using SHAPE-MaP to probe small molecule-RNA interactions. Methods 167, 105–116 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Kubota, M., Tran, C. & Spitale, R. C. Progress and challenges for chemical probing of RNA structure inside living cells. Nat. Chem. Biol. 11, 933–941 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lempereur, L. et al. Conformation of yeast 18S rRNA. Direct chemical probing of the 5′ domain in ribosomal subunits and in deproteinized RNA by reverse transcriptase mapping of dimethyl sulfate-accessible. Nucleic Acids Res. 13, 8339–8357 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zubradt, M. et al. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat. Methods 14, 75–82 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Krokhotin, A., Mustoe, A. M., Weeks, K. M. & Dokholyan, N. V. Direct identification of base-paired RNA nucleotides by correlated chemical probing. RNA 23, 6–13 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. & Weissman, J. S. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505, 701–705 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Bohn, P., Gribling-Burrer, A.-S., Ambi, U. B. & Smyth, R. P. Nano-DMS-MaP allows isoform-specific RNA structure determination. Nat. Methods 20, 849–859 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peattie, D. A. & Gilbert, W. Chemical probes for higher-order structure in RNA. Proc. Natl Acad. Sci. USA 77, 4679–4682 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mitchell, D., Cotter, J., Saleem, I. & Mustoe, A. M. Mutation signature filtering enables high-fidelity RNA structure probing at all four nucleobases with DMS. Nucleic Acids Res. 51, 8744–8757 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Onel, B., Wu, G., Sun, D., Lin, C. & Yang, D. Electrophoretic mobility shift assay and dimethyl sulfate footprinting for characterization of G-quadruplexes and G-quadruplex-protein complexes. Methods Mol. Biol. 2035, 201–222 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. England, W. E., Garfio, C. M. & Spitale, R. C. Chemical approaches to analyzing RNA structure transcriptome-wide. Chembiochem 22, 1114–1121 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Inoue, T. & Cech, T. R. Secondary structure of the circular form of the Tetrahymena rRNA intervening sequence: a technique for RNA structure analysis using chemical probes and reverse transcriptase. Proc. Natl Acad. Sci. USA 82, 648–652 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sobczak, K. & Krzyzosiak, W. J. RNA structure analysis assisted by capillary electrophoresis. Nucleic Acids Res. 30, e124 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li, B., Tambe, A., Aviran, S. & Pachter, L. PROBer provides a general toolkit for analyzing sequencing-based toeprinting assays. Cell Syst. 4, 568–574.e7 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kertesz, M. et al. Genome-wide measurement of RNA secondary structure in yeast. Nature 467, 103–107 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Underwood, J. G. et al. FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat. Methods 7, 995–1001 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lucks, J. B. et al. Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc. Natl Acad. Sci. USA 108, 11063–8 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ding, Y. et al. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505, 696–700 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Talkish, J. et al. Mod-seq: high-throughput sequencing for chemical probing of RNA structure. RNA 20, 713–720 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Incarnato, D., Neri, F., Anselmi, F. & Oliviero, S. Genome-wide profiling of mouse RNA secondary structures reveals key features of the mammalian transcriptome. Genome Biol. 15, 491 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Spitale, R. C. et al. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519, 486–490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Busan, S. & Weeks, K. M. Accurate detection of chemical modifications in RNA by mutational profiling (MaP) with ShapeMapper 2. RNA 24, 143–148 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Loughrey, D., Watters, K. E., Settle, A. H. & Lucks, J. B. SHAPE-Seq 2.0: systematic optimization and extension of high-throughput chemical probing of RNA secondary structure with next generation sequencing. Nucleic Acids Res. 42, 1–10 (2014).

    Article  Google Scholar 

  39. Sorefan, K. et al. Reducing ligation bias of small RNAs in libraries for next generation sequencing. Silence 3, 4 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Aviran, S. et al. Modeling and automation of sequencing-based characterization of RNA structure. Proc. Natl Acad. Sci. USA 108, 11069–11074 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tomezsko, P. J. et al. Determination of RNA structural diversity and its role in HIV-1 RNA splicing. Nature 582, 438–442 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Olson, S. W. et al. Discovery of a large-scale, cell-state-responsive allosteric switch in the 7SK RNA using DANCE-MaP. Mol. Cell 82, 1708–1723.e10 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Morandi, E. et al. Genome-scale deconvolution of RNA structure ensembles. Nat. Methods 18, 249–252 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Homan, P. J. et al. Single-molecule correlated chemical probing of RNA. Proc. Natl Acad. Sci. USA 111, 13858–13863 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang, M. et al. In vivo single-molecule analysis reveals COOLAIR RNA structural diversity. Nature 609, 394–399 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aw, J. G. A. et al. Determination of isoform-specific RNA structure with nanopore long reads. Nat. Biotechnol. 39, 336–346 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Bizuayehu, T. T. et al. Long-read single-molecule RNA structure sequencing using nanopore. Nucleic Acids Res. https://doi.org/10.1093/nar/gkac775 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Stephenson, W. et al. Direct detection of RNA modifications and structure using single-molecule nanopore sequencing. Cell Genomics 2, 100097 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mitchell, D., Assmann, S. M. & Bevilacqua, P. C. Probing RNA structure in vivo. Curr. Opin. Struct. Biol. 59, 151–158 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Smola, M. J., Rice, G. M., Busan, S., Siegfried, N. A. & Weeks, K. M. Selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis. Nat. Protoc. 10, 1643–1669 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tijerina, P., Mohr, S. & Russell, R. DMS footprinting of structured RNAs and RNA-protein complexes. Nat. Protoc. 2, 2608–2623 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Assmann, S. M., Chou, H.-L. & Bevilacqua, P. C. Rock, scissors, paper: how RNA structure informs function. Plant Cell 35, 1671–1707 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tian, S. & Das, R. RNA structure through multidimensional chemical mapping. Q. Rev. Biophys. 49, e7 (2016).

    Article  PubMed  Google Scholar 

  54. Gilmer, O. et al. Chemical and enzymatic probing of viral RNAs: from infancy to maturity and beyond. Viruses 13, 1894 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ye, L. et al. Short- and long-range interactions in the HIV-1 5′ UTR regulate genome dimerization and packaging. Nat. Struct. Mol. Biol. 29, 306–319 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lan, T. C. T. et al. Secondary structural ensembles of the SARS-CoV-2 RNA genome in infected cells. Nat. Commun. 13, 1–14 (2022).

    Article  CAS  Google Scholar 

  57. Hu, Y. et al. DiffSplice: the genome-wide detection of differential splicing events with RNA-seq. Nucleic Acids Res. 41, e39 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Engström, P. G. et al. Systematic evaluation of spliced alignment programs for RNA-seq data. Nat. Methods 10, 1185–1191 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Prjibelski, A. D. et al. Accurate isoform discovery with IsoQuant using long reads. Nat. Biotechnol. 41, 915–918 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, Y., Lu, L. & Li, X. Detection technologies for RNA modifications. Exp. Mol. Med. 54, 1601–1616 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zee, A. et al. Sequencing Illumina libraries at high accuracy on the ONT MinION using R2C2. Genome Res. 32, 2092–2106 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhao, C., Liu, F. & Pyle, A. M. An ultraprocessive, accurate reverse transcriptase encoded by a metazoan group II intron. RNA 24, 183–195 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Guo, L.-T. et al. Sequencing and structure probing of long RNAs using MarathonRT: a next-generation reverse transcriptase. J. Mol. Biol. 432, 3338–3352 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhao, C. & Pyle, A. M. Crystal structures of a group II intron maturase reveal a missing link in spliceosome evolution. Nat. Struct. Mol. Biol. 23, 558–565 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Guo, L.-T., Olson, S., Patel, S., Graveley, B. R. & Pyle, A. M. Direct tracking of reverse-transcriptase speed and template sensitivity: implications for sequencing and analysis of long RNA molecules. Nucleic Acids Res. 50, 6980–6989 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mohr, S. et al. Thermostable group II intron reverse transcriptase fusion proteins and their use in cDNA synthesis and next-generation RNA sequencing. RNA 19, 958–970 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ip, C. L. C. et al. MinION Analysis and Reference Consortium: phase 1 data release and analysis. F1000Res. 4, 1075 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Luo, J. et al. Systematic benchmarking of nanopore Q20+ kit in SARS-CoV-2 whole-genome sequencing. Front. Microbiol. 13, 973367 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ni, Y., Liu, X., Simeneh, Z. M., Yang, M. & Li, R. Benchmarking of Nanopore R10.4 and R9.4.1 flow cells in single-cell whole-genome amplification and whole-genome shotgun sequencing. Comput. Struct. Biotechnol. J. 21, 2352–2364 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kharytonchyk, S. et al. Transcriptional start site heterogeneity modulates the structure and function of the HIV-1 genome. Proc. Natl Acad. Sci. USA 113, 13378–13383 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Purcell, D. F. & Martin, M. A. Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity. J. Virol. 67, 6365–6378 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nguyen Quang, N. et al. Dynamic nanopore long-read sequencing analysis of HIV-1 splicing events during the early steps of infection. Retrovirology 17, 1–24 (2020).

    Article  Google Scholar 

  73. Bernacchi, S. et al. HIV-1 Pr55Gag binds genomic and spliced RNAs with different affinity and stoichiometry. RNA Biol. 14, 90–103 (2017).

    Article  PubMed  Google Scholar 

  74. Abd El-Wahab, E. W. et al. Specific recognition of the HIV-1 genomic RNA by the Gag precursor. Nat. Commun. 5, 4304 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Smyth, R. P. et al. Mutational interference mapping experiment (MIME) for studying RNA structure and function. Nat. Methods 12, 866–872 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Brown, J. D. et al. Structural basis for transcriptional start site control of HIV-1 RNA fate. Science 368, 413–417 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liao, C. et al. Spacer prioritization in CRISPR–Cas9 immunity is enabled by the leader RNA. Nat. Microbiol. 7, 530–541 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sun, L. et al. RNA structure maps across mammalian cellular compartments. Nat. Struct. Mol. Biol. 26, 322–330 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Aviran, S. & Incarnato, D. Computational approaches for RNA structure ensemble deconvolution from structure probing data: deconvolution of RNA structure ensembles. J. Mol. Biol. 434, 167635 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. Pekarek, L. et al. Cis-mediated interactions of the SARS-CoV-2 frameshift RNA alter its conformations and affect function. Nucleic Acids Res. 51, 728–743 (2023).

    Article  CAS  PubMed  Google Scholar 

  81. Zhu, C. et al. An intranasal ASO therapeutic targeting SARS-CoV-2. Nat. Commun. 13, 4503 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lin, Y., Schmidt, B. F., Bruchez, M. P. & McManus, C. J. Structural analyses of NEAT1 lncRNAs suggest long-range RNA interactions that may contribute to paraspeckle architecture. Nucleic Acids Res. 46, 3742–3752 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Smola, M. J. et al. SHAPE reveals transcript-wide interactions, complex structural domains, and protein interactions across the Xist lncRNA in living cells. Proc. Natl Acad. Sci. USA 113, 10322–10327 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lu, Z. et al. Structural modularity of the XIST ribonucleoprotein complex. Nat. Commun. 11, 6163 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim, D. et al. The architecture of SARS-CoV-2 transcriptome. Cell 181, 914–921.e10 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schmidt, N. et al. SND1 binds SARS-CoV-2 negative-sense RNA and promotes viral RNA synthesis through NSP9. Cell 186, 4834–4850.e23 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chaisson, M. J. P. et al. Resolving the complexity of the human genome using single-molecule sequencing. Nature 517, 608–611 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Al’Khafaji, A. M. et al. High-throughput RNA isoform sequencing using programmed cDNA concatenation. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01815-7 (2023).

    Article  PubMed  Google Scholar 

  89. Deigan, K. E., Li, T. W., Mathews, D. H. & Weeks, K. M. Accurate SHAPE-directed RNA structure determination. Proc. Natl Acad. Sci. USA 106, 97–102 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Rice, G. M., Leonard, C. W. & Weeks, K. M. RNA secondary structure modeling at consistent high accuracy using differential SHAPE. RNA 20, 846–854 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Breaker, R. R. Riboswitches and the RNA world. Cold Spring Harb. Perspect. Biol. 4, a003566 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Chen, Y. et al. Context-aware transcript quantification from long-read RNA-seq data with Bambu. Nat. Methods 20, 1187–1195 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hamada, M., Ono, Y., Asai, K. & Frith, M. C. Training alignment parameters for arbitrary sequencers with LAST-TRAIN. Bioinformatics 33, 926–928 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Incarnato, D., Morandi, E., Simon, L. M. & Oliviero, S. RNA Framework: an all-in-one toolkit for the analysis of RNA structures and post-transcriptional modifications. Nucleic Acids Res. 46, e97 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wayment-Steele, H. K. et al. RNA secondary structure packages evaluated and improved by high-throughput experiments. Nat. Methods 19, 1234–1242 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Darty, K., Denise, A. & Ponty, Y. VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics 25, 1974–1975 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gibbs, J. S., Regier, D. A. & Desrosiers, R. C. Construction and in vitro properties of HIV-1 mutants with deletions in ‘nonessential’ genes. AIDS Res. Hum. Retroviruses 10, 343–350 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Helmholtz Association (VH-NG-1347 to R.P.S.) and the National Institutes of Health Center for HIV RNA Studies (SUBK00019361 to R.P.S). A.-S.G.-B. was supported with a fellowship from the Peter und Traudl Engelhorn Stiftung and a Post Doc Plus funding (Graduate School of Life Sciences, University of Würzburg).

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived the study and wrote the manuscript.

Corresponding authors

Correspondence to Anne-Sophie Gribling-Burrer, Patrick Bohn or Redmond P. Smyth.

Ethics declarations

Competing interests

The authors declare no competing interests. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Peer review

Peer review information

Nature Protocols thanks Philip Bevilacqua and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Bohn, P. et al. Nat. Methods 20, 849–859 (2023): https://doi.org/10.1038/s41592-023-01862-7

Extended data

Extended Data Fig. 1 Flowchart of bioinformatic analysis.

Each major stage of the analysis is shown highlighted in colored boxes and QC steps are shown on the right side. Files generated during the different steps of the analysis are depicted in boxes. The tools/analysis steps are shown as triangular arrows, with options highlighted in hexagons.

Extended Data Fig. 2 Effect of subsampling on Pearson correlation coefficient between DMS reactivities of different isoforms of both replicates.

(a) Pearson correlation coefficient within multiple subsample iterations at the same subsampling depth reveal isoforms where all variation has been sufficiently sampled (correlation coefficient >0.9 at subsampling rate of 50%), and those where the underlying diversity is not yet fully sampled (correlation coefficient <0.9 at subsampling rate of 50%). (b) Pearson correlation coefficient between replicates 1 and 2 of each sample and isoform at different subsampling depths as a quality control measure of reproducibility of DMS probing data. Plateauing of the correlation coefficient below 0.9 with increasing coverage may indicate that stochastic effects during reverse transcription due to low number of fully reverse transcribed molecules may have resulted in divergent cDNA mutation pools.

Source data

Source Data Fig. 2

Raw data for Fig. 2c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gribling-Burrer, AS., Bohn, P. & Smyth, R.P. Isoform-specific RNA structure determination using Nano-DMS-MaP. Nat Protoc (2024). https://doi.org/10.1038/s41596-024-00959-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-024-00959-3

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing