Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Comprehensive multiscale analysis of lactate metabolic dynamics in vitro and in vivo using highly responsive biosensors

Abstract

As a key glycolytic metabolite, lactate has a central role in diverse physiological and pathological processes. However, comprehensive multiscale analysis of lactate metabolic dynamics in vitro and in vivo has remained an unsolved problem until now owing to the lack of a high-performance tool. We recently developed a series of genetically encoded fluorescent sensors for lactate, named FiLa, which illuminate lactate metabolism in cells, subcellular organelles, animals, and human serum and urine. In this protocol, we first describe the FiLa sensor-based strategies for real-time subcellular bioenergetic flux analysis by profiling the lactate metabolic response to different nutritional and pharmacological conditions, which provides a systematic-level view of cellular metabolic function at the subcellular scale for the first time. We also report detailed procedures for imaging lactate dynamics in live mice through a cell microcapsule system or recombinant adeno-associated virus and for the rapid and simple assay of lactate in human body fluids. This comprehensive multiscale metabolic analysis strategy may also be applied to other metabolite biosensors using various analytic platforms, further expanding its usability. The protocol is suited for users with expertise in biochemistry, molecular biology and cell biology. Typically, the preparation of FiLa-expressing cells or mice takes 2 days to 4 weeks, and live-cell and in vivo imaging can be performed within 1–2 hours. For the FiLa-based assay of body fluids, the whole measuring procedure generally takes ~1 min for one sample in a manual assay or ~3 min for 96 samples in an automatic microplate assay.

Key points

  • This protocol describes the use of FiLa biosensors, fluorescence-based sensors for the analysis of lactate metabolism. FiLa biosensors can be used in both in vitro assays and in vivo assays, and under different nutritional and pharmacological conditions.

  • Unlike traditional methods of lactate analysis, FiLa biosensors allow subcellular analysis of lactate in real time and show a larger fluorescence ratio response than existing biosensors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genetically encoded lactate sensors.
Fig. 2: Imaging subcellular lactate metabolism under various nutritional conditions.
Fig. 3: Comparison study of the glycolysis stress test in live cells by Seahorse Analyzer or FiLa.
Fig. 4: Effects of different metabolic modulators on subcellular lactate levels.
Fig. 5: Imaging lactate metabolism in vivo by cell microcapsules.
Fig. 6: Imaging lactate metabolism in live mice with T1DM.
Fig. 7: Rapid and simple assay to determine the plasma lactate levels of tai chi athletes and rugby athletes.

Similar content being viewed by others

Data availability

The data used to generate the example results presented in Table 2 are available in the supporting primary research paper39. All other data supporting the findings of this study are available for research purposes from the authors upon reasonable request. Source data are provided with this paper.

References

  1. Harjes, U. Metabolism: more lactate, please. Nat. Rev. Cancer 17, 707 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  ADS  Google Scholar 

  3. Rabinowitz, J. D. & Enerbäck, S. Lactate: the ugly duckling of energy metabolism. Nat. Metab. 2, 566–571 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Martinez-Reyes, I. & Chandel, N. S. Waste not, want not: lactate oxidation fuels the TCA cycle. Cell Metab. 26, 803–804 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Hui, S. et al. Glucose feeds the TCA cycle via circulating lactate. Nature 551, 115–118 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, W. et al. Lactate is a natural suppressor of RLR signaling by targeting MAVS. Cell 178, 176–189 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Daw, C. C. et al. Lactate elicits ER–mitochondrial Mg2+ dynamics to integrate cellular metabolism. Cell 183, 474–489 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, D. et al. Metabolic regulation of gene expression by histone lactylation. Nature 574, 575–580 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brooks, G. A. The science and translation of lactate shuttle theory. Cell Metab. 27, 757–785 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Boussouar, F. & Benahmed, M. Lactate and energy metabolism in male germ cells. Trends Endocrinol. Metab. 15, 345–350 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Oginuma, M. et al. A gradient of glycolytic activity coordinates FGF and Wnt signaling during elongation of the body axis in amniote embryos. Dev. Cell 40, 342–353 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Du, J. et al. A small-molecule cocktail promotes mammalian cardiomyocyte proliferation and heart regeneration. Cell Stem Cell 29, 545–558 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Velentzas, P. D. et al. The proton-coupled monocarboxylate transporter hermes is necessary for autophagy during cell death. Dev. Cell 47, 281–293 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jia, M. et al. ULK1-mediated metabolic reprogramming regulates Vps34 lipid kinase activity by its lactylation. Sci. Adv. 9, eadg4993 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee, D. C. et al. A lactate-induced response to hypoxia. Cell 161, 595–609 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Torrini, C. et al. Lactate is an epigenetic metabolite that drives survival in model systems of glioblastoma. Mol. Cell 82, 3061–3076 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Scheiman, J. et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat. Med. 25, 1104–1109 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zeni, A. I., Hoffman, M. D. & Clifford, P. S. Energy expenditure with indoor exercise machines. J. Am. Med. Assoc. 275, 1424–1427 (1996).

    Article  CAS  Google Scholar 

  19. Marin, E. et al. Human tolerogenic dendritic cells regulate immune responses through lactate synthesis. Cell Metab. 30, 1075–1090 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Xu, K. et al. Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity. Science 371, 405–410 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Suzuki, A. et al. Astrocyte–neuron lactate transport is required for long-term memory formation. Cell 144, 810–823 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Magistretti, P. J. & Allaman, I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat. Rev. Neurosci. 19, 235–249 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Zeng, X. et al. Gut bacterial nutrient preferences quantified in vivo. Cell 185, 3441–3456 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Iatsenko, I., Boquete, J. P. & Lemaitre, B. Microbiota-derived lactate activates production of reactive oxygen species by the intestinal NADPH oxidase Nox and shortens Drosophila lifespan. Immunity 49, 929–942 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Dou, X. et al. PDK4-dependent hypercatabolism and lactate production of senescent cells promotes cancer malignancy. Nat. Metab. 5, 1887–1010 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lund, J., Clemmensen, C. & Schwartz, T. W. Outrunning obesity with Lac-Phe? Cell Metab. 34, 1085–1087 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Li, V. L. et al. An exercise-inducible metabolite that suppresses feeding and obesity. Nature 606, 785–790 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin, Y. et al. Lactate is a key mediator that links obesity to insulin resistance via modulating cytokine production from adipose tissue. Diabetes 71, 637–652 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Watson, M. J. et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 591, 645–651 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Martinez-Reyes, I. & Chandel, N. S. Cancer metabolism: looking forward. Nat. Rev. Cancer 21, 669–680 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, Y. et al. Saturation of the mitochondrial NADH shuttles drives aerobic glycolysis in proliferating cells. Mol. Cell 82, 3270–3283 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gomez, H. & Kellum, J. A. Lactate in sepsis. J. Am. Med. Assoc. 313, 194–195 (2015).

    Article  CAS  Google Scholar 

  33. Immke, D. C. & McCleskey, E. W. Lactate enhances the acid-sensing Na+ channel on ischemia-sensing neurons. Nat. Neurosci. 4, 869–870 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, J. et al. Endothelial lactate controls muscle regeneration from ischemia by inducing M2-like macrophage polarization. Cell Metab. 31, 1136–1153 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cluntun, A. A. et al. The pyruvate–lactate axis modulates cardiac hypertrophy and heart failure. Cell Metab. 33, 629–648 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Pan, R. Y. et al. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer’s disease. Cell Metab. 34, 634–648 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Glancy, B. et al. Mitochondrial lactate metabolism: history and implications for exercise and disease. J. Physiol. 599, 863–888 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Wan, N. et al. Cyclic immonium ion of lactyllysine reveals widespread lactylation in the human proteome. Nat. Methods 19, 854–864 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Li, X. et al. Ultrasensitive sensors reveal the spatiotemporal landscape of lactate metabolism in physiology and disease. Cell Metab. 35, 200–211 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Kraut, J. A. & Madias, N. E. Lactic acidosis. N. Engl. J. Med. 371, 2309–2319 (2014).

    Article  PubMed  Google Scholar 

  41. van der Windt, G. J. W., Chang, C. H. & Pearce, E. L. Measuring bioenergetics in T cells using a seahorse extracellular flux analyzer. Curr. Prot. Immunol. 113, 16B.11–16B.14 (2016).

    Google Scholar 

  42. Choe, M. & Titov, D. V. Genetically encoded tools for measuring and manipulating metabolism. Nat. Chem. Biol. 18, 451–460 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zou, Y. et al. Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors. Nat. Protoc. 13, 2362–2386 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, Z., Cheng, X., Zhao, Y. & Yang, Y. Lighting up live-cell and in vivo central carbon metabolism with genetically encoded fluorescent sensors. Annu. Rev. Anal. Chem. 13, 293–314 (2020).

    Article  CAS  Google Scholar 

  45. Zhao, Y. et al. In vivo monitoring of cellular energy metabolism using SoNar, a highly responsive sensor for NAD+/NADH redox state. Nat. Protoc. 11, 1345–1359 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Zhao, Y. & Yang, Y. Profiling metabolic states with genetically encoded fluorescent biosensors for NADH. Curr. Opin. Biotechnol. 31, 86–92 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Zhao, Y. et al. Genetically encoded fluorescent sensors for intracellular NADH detection. Cell Metab. 14, 555–566 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhao, Y. et al. SoNar, a highly responsive NAD+/NADH sensor, allows high-throughput metabolic screening of anti-tumor agents. Cell Metab. 21, 777–789 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tao, R. et al. Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nat. Methods 14, 720–728 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zou, Y. et al. Illuminating NAD+ metabolism in live cells and in vivo using a genetically encoded fluorescent sensor. Dev. Cell 53, 240–252 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. San Martin, A. et al. A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells. PloS ONE 8, e57712 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Harada, K. et al. Green fluorescent protein-based lactate and pyruvate indicators suitable for biochemical assays and live cell imaging. Sci. Rep. 10, 19562 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nasu, Y. et al. A genetically encoded fluorescent biosensor for extracellular l-lactate. Nat. Commun. 12, 7058 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bekdash, R. et al. GEM-IL: a highly responsive fluorescent lactate indicator. Cell Rep. Methods 1, 100092 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Koveal, D. et al. A high-throughput multiparameter screen for accelerated development and optimization of soluble genetically encoded fluorescent biosensors. Nat. Commun. 13, 2919 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Aburto, C. et al. Single-fluorophore indicator to explore cellular and subcellular lactate dynamics. ACS Sens. 7, 3278–3286 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Aguilera, L. et al. Dual role of LldR in regulation of the lldPRD operon, involved in l-lactate metabolism in Escherichia coli. J. Bacteriol. 190, 2997–3005 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li, Z. & Ai, H. W. Illuminating lactate in cells, mice, and patient samples. Cell Metab. 35, 5–7 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wishart, D. S. et al. HMDB 5.0: the human metabolome database for 2022. Nucleic Acids Res. 50, D622–d631 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Chen, W. W., Freinkman, E., Wang, T., Birsoy, K. & Sabatini, D. M. Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism. Cell 166, 1324–1337.e1311 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhao, Y. et al. An expanded palette of genetically encoded Ca2+ indicators. Science 333, 1888–1891 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wiederkehr, A. & Demaurex, N. Illuminating redox biology using NADH- and NADPH-specific sensors. Nat. Methods 14, 671–672 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Gu, W. et al. Glycolytic metabolism plays a functional role in regulating human pluripotent stem cell state. Cell Stem Cell 19, 476–490 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hernández, G. et al. Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock: the ANDROMEDA-SHOCK randomized clinical trial. J. Am. Med. Assoc. 321, 654–664 (2019).

    Article  Google Scholar 

  65. Larsen, T. Fluorometric determination of d-lactate in biological fluids. Anal. Biochem. 539, 152–157 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Belousov, V. V. et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3, 281–286 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Berg, J., Hung, Y. P. & Yellen, G. A genetically encoded fluorescent reporter of ATP:ADP ratio. Nat. Methods 6, 161–166 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tantama, M., Hung, Y. P. & Yellen, G. Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor. J. Am. Chem. Soc. 133, 10034–10037 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xue, S. et al. A synthetic-biology-inspired therapeutic strategy for targeting and treating hepatogenous diabetes. Mol. Ther. 25, 443–455 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhou, Y. et al. A small and highly sensitive red/far-red optogenetic switch for applications in mammals. Nat. Biotechnol. 40, 262–272 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Wu, Z., Asokan, A. & Samulski, R. J. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol. Ther. 14, 316–327 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Fripont, S., Marneffe, C., Marino, M., Rincon, M. Y. & Holt, M. G. Production, purification, and quality control for adeno-associated virus-based vectors. J. Vis. Exp. https://doi.org/10.3791/58960 (2019).

    Article  PubMed  Google Scholar 

  73. Gutscher, M. et al. Real-time imaging of the intracellular glutathione redox potential. Nat. Methods 5, 553–559 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is supported by National Key Research and Development Program of China (2019YFA0904800 to Y. Zhao and 2021YFA0804900 to A.W.), National Natural Science Foundation of China (32150030, 32030065, 32121005 and 92049304 to Y. Zhao; 91857202, 21937004 and 32150028 to Y.Y.; 82030039 to Z.J; 32000920 to A.W.; 32201230 to Y. Zou), the Shanghai Science and Technology Commission (20JC1412000), the Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism (Y. Zhao), the Research Unit of New Techniques for Live-cell Metabolic Imaging (Chinese Academy of Medical Sciences, 2019-I2M-5-013 to Y. Zhao), the innovative research team of high-level local universities in Shanghai, the State Key Laboratory of Bioreactor Engineering, the Fundamental Research Funds for the Central Universities, US National Institutes of Health (HL155107, HL155096 and HL166137 to J.L.) and the American Heart Association (AHA2020CV-19 and AHA957729 to J.L.).

Author information

Authors and Affiliations

Authors

Contributions

Y. Zhao, Y.Y., T. Li, A.W. and Y. Zou conceived and designed the live-cell and live-mice imaging experiments. Y. Zhao and Ru Wang designed the body fluid analysis experiment. A.W., Y. Zou, T. Li, S.L., X.Z., L.Z. and Ruwen Wang performed experiments. Y.X., X.L., Z.Z., T. Liu, Z.J. and J.L. gave technical support and conceptual advice. Y. Zhao, Y.Y., R.W., A.W., Y. Zou, T. Li and J.L. analyzed the data and wrote the manuscript.

Corresponding authors

Correspondence to Ting Li, Ru Wang, Yi Yang or Yuzheng Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Jonathan Rocheleau, Masayuki Yazawa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Li, X. et al. Cell Metab. 35, 200–211 (2023): https://doi.org/10.1016/j.cmet.2022.10.002

Jia, M. et al. Sci. Adv. 9, eadg4993 (2023): https://doi.org/10.1126/sciadv.adg4993

Dou, X. et al. Nat. Metab. 5, 1887–1910 (2023): https://doi.org/10.1038/s42255-023-00912-w

Supplementary information

Supplementary Information

Supplementary Figs. 1–8.

Supplementary Data

Source data for Supplementary Figs. 1–7.

Source data

Source Data Figs. 1–7

Statistical source data for Figs. 1–7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, A., Zou, Y., Liu, S. et al. Comprehensive multiscale analysis of lactate metabolic dynamics in vitro and in vivo using highly responsive biosensors. Nat Protoc (2024). https://doi.org/10.1038/s41596-023-00948-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-023-00948-y

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing