Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Using high-resolution microscopy data to generate realistic structures for electromagnetic FDTD simulations from complex biological models

Abstract

Finite-difference time-domain (FDTD) electromagnetic simulations are a computational method that has seen much success in the study of biological optics; however, such simulations are often hindered by the difficulty of faithfully replicating complex biological microstructures in the simulation space. Recently, we designed simulations to calculate the trajectory of electromagnetic light waves through realistically reconstructed retinal photoreceptors and found that cone photoreceptor mitochondria play a substantial role in shaping incoming light. In addition to vision research and ophthalmology, such simulations are broadly applicable to studies of the interaction of electromagnetic radiation with biological tissue. Here, we present our method for discretizing complex 3D models of cellular structures for use in FDTD simulations using MEEP, the MIT Electromagnetic Equation Propagation software, including subpixel smoothing at mesh boundaries. Such models can originate from experimental imaging or be constructed by hand. We also include sample code for use in MEEP. Implementation of this algorithm in new code requires understanding of 3D mathematics and may require several weeks of effort, whereas use of our sample code requires knowledge of MEEP and C++ and may take up to a few hours to prepare a model of interest for 3D FDTD simulation. In all cases, access to a facility supercomputer with parallel processing capabilities is recommended. This protocol offers a practical solution to a significant challenge in the field of computational electrodynamics and paves the way for future advancements in the study of light interaction with biological structures.

Key points

  • This protocol provides a detailed roadmap for scientists interested in performing FDTD computational simulations to probe the interactions of electromagnetic waves (e.g., visible light or microwave radiation) with complex structures such as organs or biological cells.

  • This approach converts 3D models obtained by using microscopy to a ‘discretized’ form compatible with FDTD; the model surface data are used to perform subpixel smoothing to increase simulation accuracy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Discretizing structures from 3D microscopy images for computational simulations.
Fig. 2: Determining whether a test point lies within or outside a closed contour.
Fig. 3: Simplifying the point-in-polygon problem in three dimensions by subdivision and interpolation.
Fig. 4: Calculating the shortest distance between a triangle and a point in 3D space.
Fig. 5: Subpixel averaging: determining whether a voxel surrounding a test point p overlaps a boundary with a finite thickness.
Fig. 6: Subpixel averaging: calculating the overlapping volume (fill fraction) between a voxel and a boundary with a finite thickness.
Fig. 7: Optimizing the discretization of a complex simulation domain.
Fig. 8: Anticipated discretization and FDTD simulation results for three different cone photoreceptor models.
Fig. 9: Mie scattering calculations for a lossless sphere using discretized icosahedrons of increasing accuracy.

Similar content being viewed by others

Data availability

The data used in this protocol to make these figures have been made available as part of a Figshare public repository41. It is shared under a GPL 3.0+ license.

Code availability

The code used in this protocol to make these figures has been made freely available as part of a Figshare public repository41. It is shared under a GPL 3.0+ license.

References

  1. Taflove, A. A perspective on the 40-year history of FDTD computational electrodynamics. Appl. Comput. Electromagn. Soc. J. 22, 1–21 (2007).

  2. McCoy, D. E., Shneidman, A. V., Davis, A. L. & Aizenberg, J. Finite-difference time-domain (FDTD) optical simulations: a primer for the life sciences and bio-inspired engineering. Micron 151, 103160 (2021).

    Article  PubMed  Google Scholar 

  3. Endler, J. A. & Mappes, J. The current and future state of animal coloration research. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160352 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pozo, A. M., Pérez-Ocón, F. & Jiménez, J. R. FDTD analysis of the light propagation in the cones of the human retina: an approach to the Stiles–Crawford effect of the first kind. J. Opt. A: Pure Appl. Opt. 7, 357–363 (2005).

    Article  ADS  Google Scholar 

  5. Solovei, I. et al. Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137, 356–368 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Stavenga, D. G. & Wilts, B. D. Oil droplets of bird eyes: microlenses acting as spectral filters. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130041 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wilby, D. & Roberts, N. W. Optical influence of oil droplets on cone photoreceptor sensitivity. J. Exp. Biol. 220, 1997–2004 (2017).

    PubMed  PubMed Central  Google Scholar 

  8. Kreysing, M. et al. Photonic crystal light collectors in fish retina improve vision in turbid water. Science 336, 1700–1703 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Sankaran, K. Are you using the right tools in computational electromagnetics? Eng. Rep. 1, e12041 (2019).

    Article  Google Scholar 

  10. Ball, J. M., Chen, S. & Li, W. Mitochondria in cone photoreceptors act as microlenses to enhance photon delivery and confer directional sensitivity to light. Sci. Adv. 8, eabn2070 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stavenga, D. G., Leertouwer, H. L. & Wilts, B. D. Magnificent magpie colours by feathers with layers of hollow melanosomes. J. Exp. Biol. 221, jeb174656 (2018).

    PubMed  Google Scholar 

  12. McCoy, D. E. et al. Microstructures amplify carotenoid plumage signals in tanagers. Sci. Rep. 11, 8582 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Davis, A. L. et al. Ultra-black camouflage in deep-sea fishes. Curr. Biol. 30, 3470–3476.e3 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Lemcoff, T. et al. Brilliant whiteness in shrimp from ultra-thin layers of birefringent nanospheres. Nat. Photon. 17, 485–493 (2023).

    Article  CAS  ADS  Google Scholar 

  15. Saba, M., Wilts, B. D., Hielscher, J. & Schröder-Turk, G. E. Absence of circular polarisation in reflections of butterfly wing scales with chiral gyroid structure. Mater. Today Proc. 1, 193–208 (2014).

    Article  Google Scholar 

  16. Wilts, B. D., Wijnen, B., Leertouwer, H. L., Steiner, U. & Stavenga, D. G. Extreme refractive index wing scale beads containing dense Pterin pigments cause the bright colors of Pierid butterflies. Adv. Opt. Mater. 5, 1600879 (2017).

    Article  Google Scholar 

  17. Agez, G., Bayon, C. & Mitov, M. Multiwavelength micromirrors in the cuticle of scarab beetle Chrysina gloriosa. Acta Biomaterialia 48, 357–367 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Wilts, B. D. et al. Evolutionary-optimized photonic network structure in white beetle wing scales. Adv. Mater. 30, e1702057 (2018).

    Article  PubMed  Google Scholar 

  19. Chandler, C. J. et al. Structural colour in Chondrus crispus. Sci. Rep. 5, 11645 (2015).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  20. Heil, C. M. et al. Mechanism of structural colors in binary mixtures of nanoparticle-based supraballs. Sci. Adv. 9, eadf2859 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vukusic, P. & Sambles, J. R. Photonic structures in biology. Nature 424, 852–855 (2003).

    Article  CAS  PubMed  ADS  Google Scholar 

  22. AlSawaftah, N., El-Abed, S., Dhou, S. & Zakaria, A. Microwave imaging for early breast cancer detection: current state, challenges, and future directions. J. Imaging 8, 123 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Saeki, M. et al. FDTD simulation study of ultrasonic wave propagation in human radius model generated from 3D HR-pQCT images. Phys. Med. 10, 100029 (2020).

    Article  Google Scholar 

  24. Vakarin, V. et al. Metamaterial-engineered silicon beam splitter fabricated with deep UV immersion lithography. Nanomaterials (Basel) 11, 2949 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Pokhrel, S., Shankar, V. & Simpson, J. J. 3-D FDTD modeling of electromagnetic wave propagation in magnetized plasma requiring singular updates to the current density equation. IEEE Trans. Antennas Propag. 66, 4772–4781 (2018).

    Article  ADS  Google Scholar 

  26. Nagelberg, S. et al. Reconfigurable and responsive droplet-based compound micro-lenses. Nat. Commun. 8, 14673 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  27. Yee, K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propagat. 14, 302–307 (1966).

    Article  ADS  Google Scholar 

  28. Jacucci, G., Vignolini, S. & Schertel, L. The limitations of extending nature’s color palette in correlated, disordered systems. Proc. Natl Acad. Sci. USA 117, 23345–23349 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  29. Dunning, J. et al. How woodcocks produce the most brilliant white plumage patches among the birds. J. R. Soc. Interface 20, 20220920 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wilts, B. D., Michielsen, K., De Raedt, H. & Stavenga, D. G. Sparkling feather reflections of a bird-of-paradise explained by finite-difference time-domain modeling. Proc. Natl Acad. Sci. USA 111, 4363–4368 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Michielsen, K., De Raedt, H. & Stavenga, D. G. Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi. J. R. Soc. Interface 7, 765–771 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dolan, J. A. et al. Optical properties of gyroid structured materials: from photonic crystals to metamaterials. Adv. Opt. Mater. 3, 12–32 (2015).

    Article  CAS  Google Scholar 

  33. Holland, R. Pitfalls of staircase meshing. IEEE Trans. Electromagn. Compat. 35, 434–439 (1993).

    Article  Google Scholar 

  34. Bourke, S. A., Dawson, J. F., Flintoft, I. D. & Robinson, M. P. Errors in the shielding effectiveness of cavities due to stair-cased meshing in FDTD: application of empirical correction factors. In 2017 International Symposium on Electromagnetic Compatibility - EMC EUROPE 1–6 Available at https://ieeexplore.ieee.org/document/8094791 (2017).

  35. Wu, R.-B. & Itoh, T. Hybrid finite-difference time-domain modeling of curved surfaces using tetrahedral edge elements. IEEE Trans. Antennas Propag. 45, 1302–1309 (1997).

    Article  ADS  Google Scholar 

  36. Dunn, A. K., Smithpeter, C. L., Welch, A. J. & Richards-Kortum, R. R. Finite-difference time-domain simulation of light scattering from single cells. J. Biomed. Opt. 2, 262–266 (1997).

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Liu, J., Brio, M. & Moloney, J. V. Subpixel smoothing finite-difference time-domain method for material interface between dielectric and dispersive media. Opt. Lett. 37, 4802–4804 (2012).

    Article  PubMed  ADS  Google Scholar 

  38. Deinega, A. & Valuev, I. Subpixel smoothing for conductive and dispersive media in the finite-difference time-domain method. Opt. Lett. 32, 3429–3431 (2007).

    Article  PubMed  ADS  Google Scholar 

  39. Farjadpour, A. et al. Improving accuracy by subpixel smoothing in the finite-difference time domain. Opt. Lett. 31, 2972–2974 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Oskooi, A. F., Kottke, C. & Johnson, S. G. Accurate finite-difference time-domain simulation of anisotropic media by subpixel smoothing. Opt. Lett. 34, 2778–2780 (2009).

    Article  PubMed  ADS  Google Scholar 

  41. Ball, J. M. & Li, W. Sample code and data for converting and discretizing complex 3D models for FDTD electromagnetic simulations. Preprint at https://doi.org/10.6084/m9.figshare.c.6293238.v1 (2022).

  42. Stavenga, D. G., Leertouwer, H. L. & Wilts, B. D. Quantifying the refractive index dispersion of a pigmented biological tissue using Jamin–Lebedeff interference microscopy. Light Sci. Appl. 2, e100 (2013).

    Article  ADS  Google Scholar 

  43. Barer, R. & Joseph, S. Refractometry of living cells: Part III. Technical and optical methods. J. Cell Sci. s3-96, 423–447 (1955).

    Article  Google Scholar 

  44. Kholodtsova, M. N., Daul, C., Loschenov, V. B. & Blondel, W. C. P. M. Spatially and spectrally resolved particle swarm optimization for precise optical property estimation using diffuse-reflectance spectroscopy. Opt. Express 24, 12682–12700 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Çapoğlu, İ. R., Taflove, A. & Backman, V. Computation of tightly-focused laser beams in the FDTD method. Opt. Express 21, 87–101 (2013).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  46. Oskooi, A. F. et al. Meep: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181, 687–702 (2010).

    Article  CAS  ADS  Google Scholar 

  47. Gao, J.-Y. & Wang, X.-H. Toward the development of an efficient and stability-improved FDTD method for anisotropic magnetized plasma. Prog. Electromagn. Res. Lett. 104, 113–120 (2022).

    Article  Google Scholar 

  48. Joseph, R. M. & Taflove, A. FDTD Maxwell’s equations models for nonlinear electrodynamics and optics. IEEE Trans. Antennas Propag. 45, 364–374 (1997).

    Article  ADS  Google Scholar 

  49. Hormann, K. & Agathos, A. The point in polygon problem for arbitrary polygons. Comput. Geom. 20, 131–144 (2001).

    Article  MathSciNet  Google Scholar 

  50. Sampson, D. M., Dubis, A. M., Chen, F. K., Zawadzki, R. J. & Sampson, D. D. Towards standardizing retinal optical coherence tomography angiography: a review. Light Sci. Appl. 11, 63 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  51. Burns, S. A., Elsner, A. E., Sapoznik, K. A., Warner, R. L. & Gast, T. J. Adaptive optics imaging of the human retina. Prog. Retin. Eye Res. 68, 1–30 (2019).

    Article  PubMed  Google Scholar 

  52. Labin, A. M., Safuri, S. K., Ribak, E. N. & Perlman, I. Müller cells separate between wavelengths to improve day vision with minimal effect upon night vision. Nat. Commun. 5, 4319 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  53. Meadway, A. & Sincich, L. C. Light propagation and capture in cone photoreceptors. Biomed. Opt. Express 9, 5543–5565 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Weigert, M., Subramanian, K., Bundschuh, S. T., Myers, E. W. & Kreysing, M. Biobeam—multiplexed wave-optical simulations of light-sheet microscopy. PLoS Comput. Biol. 14, e1006079 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  55. Subramanian, K. et al. Rod nuclear architecture determines contrast transmission of the retina and behavioral sensitivity in mice. eLife 8, e49542 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Osnabrugge, G., Leedumrongwatthanakun, S. & Vellekoop, I. M. A convergent Born series for solving the inhomogeneous Helmholtz equation in arbitrarily large media. J. Comput. Phys. 322, 113–124 (2016).

    Article  MathSciNet  ADS  Google Scholar 

  57. Thendiyammal, A., Osnabrugge, G., Knop, T. & Vellekoop, I. M. Model-based wavefront shaping microscopy. Opt. Lett. 45, 5101–5104 (2020).

    Article  PubMed  ADS  Google Scholar 

  58. Santos, J. M. et al. A 3D CAD model input pipeline for REFMUL3 full-wave FDTD 3D simulator. J. Instrum. 16, C11013 (2021).

    Article  Google Scholar 

  59. Thon, S., Gesquière, G. & Raffin, R. A low cost antialiased space filled voxelization of polygonal objects. In Proceedings of the International Conference Graphicon 2004 (GraphiCon Scientific Society, 2004); https://www.graphicon.ru/en/conference/2004/proceedings

  60. Feito, F. R. & Torres, J. C. Inclusion test for general polyhedra. Comput. Graph. 21, 23–30 (1997).

    Article  Google Scholar 

  61. Ooms, K., De Maeyer, P. & Neutens, T. A 3D inclusion test on large dataset. In Developments in 3D Geo-Information Sciences (eds. Neutens, T. & Maeyer, P.) 181–199 (Springer, 2010).

  62. Wang, W., Li, J., Sun, H. & Wu, E. Layer-based representation of polyhedrons for point containment tests. IEEE Trans. Vis. Comput. Graph. 14, 73–83 (2008).

    Article  CAS  PubMed  ADS  Google Scholar 

  63. Horvat, D. & Zalik, B. Ray-casting point-in-polyhedron test. In Proceedings of the Central European Seminar on Computer Graphics (CESCG, 2012); https://old.cescg.org/CESCG-2012/

  64. Szucki, M. & Suchy, J. S. A voxelization based mesh generation algorithm for numerical models used in foundry engineering. Metall. Foundry Eng. 38, 43–43 (2012).

    Article  CAS  Google Scholar 

  65. Berens, M. K., Flintoft, I. D. & Dawson, J. F. Structured mesh generation: open-source automatic nonuniform mesh generation for FDTD simulation. IEEE Antennas Propag. Mag. 58, 45–55 (2016).

    Article  ADS  Google Scholar 

  66. Beuthan, J., Minet, O., Helfmann, J., Herrig, M. & Müller, G. The spatial variation of the refractive index in biological cells. Phys. Med. Biol. 41, 369–382 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Zhao, H., Brown, P. H. & Schuck, P. On the distribution of protein refractive index increments. Biophys. J. 100, 2309–2317 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  68. Sidman, R. L. The structure and concentration of solids in photoreceptor cells studied by refractometry and interference microscopy. J. Biophys. Biochem. Cytol. 3, 15–30 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Batsanov, S. S., Ruchkin, E. D. & Poroshina, I. A. Refractive Indices of Solids (Springer, 2016).

  70. Vukusic, P. & Stavenga, D. G. Physical methods for investigating structural colours in biological systems. J. R. Soc. Interface 6, S133–S148 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kumar, A. et al. Dual-view plane illumination microscopy for rapid and spatially isotropic imaging. Nat. Protoc. 9, 2555–2573 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bossy, E., Padilla, F., Peyrin, F. & Laugier, P. Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography. Phys. Med. Biol. 50, 5545–5556 (2005).

    Article  PubMed  Google Scholar 

  73. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Chandler, C. J., Wilts, B. D., Brodie, J. & Vignolini, S. Structural color in marine algae. Adv. Opt. Mater. 5, 1600646 (2017).

    Article  Google Scholar 

  75. Januszewski, M. et al. High-precision automated reconstruction of neurons with flood-filling networks. Nat. Methods 15, 605–610 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Arridge, S., Zee, P., van der, Delpy, D. T. & Cope, M. Particle sizing in the Mie scattering region: singular-value analysis. Inverse Probl. 5, 671 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  77. Knabe, W., Skatchkov, S. & Kuhn, H.-J. “Lens mitochondria” in the retinal cones of the tree-shrew Tupaia belangeri. Vis. Res. 37, 267–271 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the National Institutes of Health, National Eye Institute. We thank J. Angueyra for providing comments on an earlier version of the paper. FDTD simulations and execution of the discretization code were performed by using the computational resources of the NIH HPC Biowulf cluster (https://hpc.nih.gov).

Author information

Authors and Affiliations

Authors

Contributions

J.M.B. developed the protocol, wrote the manuscript and prepared figures. W.L. provided supervision as well as editing and feedback on the manuscript.

Corresponding author

Correspondence to John M. Ball.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Ramkumar Sabesan, Bodo Wilts and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Ball, J. M. et al. Sci. Adv. 8, eabn2070 (2022): https://doi.org/10.1126/sciadv.abn2070

Extended data

Extended Data Fig. 1 Example general workflow for classifying a point p within a grid of voxels by using a 3D model defined by a set of nested structures at three hierarchical levels (top, middle and bottom).

Compare to Extended Data Figs. 38 for further details. Blocks with light red and blue backgrounds represent ROI checks using exclusive and inclusive ROIs, respectively.

Extended Data Fig. 2 Schematized diagrams for the hierarchical file structures output by the discretization protocol provided here.

Dashed vertical lines and ellipses represent implied additional elements that have been omitted here for clarity. Bracketed descriptors indicate the size and type of data stored for key elements or provide other clarifying details.

Extended Data Fig. 3 Top-level point-classification flow diagram.

Note that lowercase n values here and in Extended Data Figs. 46 represent iteration count variables and should not be confused with normal vectors; e.g., ‘nmito’ represents the current mitochondria object index. Steps marked ‘STOP’ indicate end conditions in which classification of a point can be definitively identified as indicated. Diamond blocks indicate branching decision points. Double-plus (++) signs are used to increment element counts within loops. Proceed to ‘precise checks’ (Extended Data Fig. 4) where indicated.

Extended Data Fig. 4 ‘Precise check’ flow diagram to classify points as needed when simple checks (Extended Data Fig. 3) fail to classify p.

See Extended Data Fig. 3 for symbol clarification. When indicated, proceed to subpixel averaging calculations (Extended Data Fig. 5) to calculate fill fractions for boundary intersection voxels.

Extended Data Fig. 5 Top-level flow diagram to calculate subpixel averaging parameters for voxels identified as boundary intersections (Extended Data Fig. 4; see also Extended Data Fig. 3 for symbol clarification).

After transformation of the intersecting triangle (see Procedure and our public data repository41 for additional explanation), use the transformed normal vector n′′ to determine whether a 3D, 2D or 1D calculation is required (Extended Data Figs. 68, respectively).

Extended Data Fig. 6 Flow diagram to perform 3D fill fraction calculations when directed during subpixel averaging (Extended Data Fig. 5).

See Extended Data Figs. 35 for additional information. Note that for a finite boundary of width θ′ centered upon T′′, two sets of fill fraction calculations must be performed: once for the portion of the unit cube behind the inner surface (lower boundary) and a second time for the portion of the unit cube behind the outer surface (upper boundary).

Extended Data Fig. 7 Flow diagram to perform 2D fill fraction calculations when directed during subpixel averaging (Extended Data Fig. 5).

See Extended Data Figs. 36 for additional information. The first step is to determine which 2D plane (i.e., X-Y, Y-Z or X-Z) is appropriate for computations and to calculate appropriate plane parameters. In the block marked ‘Determine case for fill fraction calculation’, each block presents a calculation whose negative versus positive result determines which case number (in gray) to use for the remainder of this diagram. Note that the height and width of the squares in the final block are 1.

Extended Data Fig. 8 Flow diagram to perform 1D fill fraction calculations when directed during subpixel averaging (Extended Data Fig. 5).

See Extended Data Figs. 37 for additional information. The unit-cube normalization performed previously (Extended Data Fig. 5) simplifies the calculation.

Supplementary information

Supplementary Information

Supplementary Tutorial

Supplementary Video 1

Animation depicting the use of the rigid body physics engine in Blender to fill the cone photoreceptor inner segment membrane ‘container’ with arbitrary shapes representing alternative mitochondria morphologies. The development of this model is detailed in the tutorial found in Supplementary Information.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ball, J.M., Li, W. Using high-resolution microscopy data to generate realistic structures for electromagnetic FDTD simulations from complex biological models. Nat Protoc (2024). https://doi.org/10.1038/s41596-023-00947-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-023-00947-z

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics