Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Irreversible light-activated SpyLigation mediates split-protein assembly in 4D

Abstract

The conditional assembly of split-protein pairs to modulate biological activity is commonly achieved by fusing split-protein fragments to dimerizing components that bring inactive pairs into close proximity in response to an exogenous trigger. However, current methods lack full spatial and temporal control over reconstitution, require sustained activation and lack specificity. Here light-activated SpyLigation (LASL), based on the photoregulation of the covalent SpyTag (ST)/SpyCatcher (SC) peptide–protein reaction, assembles nonfunctional split fragment pairs rapidly and irreversibly in solution, in engineered biomaterials and intracellularly. LASL introduces an ortho-nitrobenzyl(oNB)-caged lysine into SC’s reactive site to generate a photoactivatable SC (pSC). Split-protein pairs of interest fused to pSC and ST are conditionally assembled via near-ultraviolet or pulsed near-infrared irradiation, as the uncaged SC can react with ST to ligate appended fragments. We describe procedures for the efficient synthesis of the photocaged amino acid that is incorporated within pSC (<5 days) as well as the design and cloning of LASL plasmids (1–4 days) for recombinant protein expression in either Escherichia coli (5–6 days) or mammalian cells (4–6 days), which require some prior expertise in protein engineering. We provide a chemoenzymatic scheme for appending bioorthogonal reactive handles onto E. coli-purified pSC protein (<4 days) that permits LASL component incorporation and patterned protein activation within many common biomaterial platforms. Given that LASL is irreversible, the photolithographic patterning procedures are fast and do not require sustained light exposure. Overall, LASL can be used to interrogate and modulate cell signaling in various settings.

Key points

  • The procedures cover a synthetic route to generate the photocaged lysine for photocaged SpyCatcher expression, the design of light-activated SpyLigation split proteins and plasmid vector design for expression in bacterial or mammalian cells.

  • The light-activated SpyLigation recombinant proteins are expressed and tested in solution, tethered into engineered biomaterials by site-specifically appending biorthogonal reactive handles on photocaged SpyCatcher through a sortase-mediated reaction, and transfected into mammalian cells for intracellular protein localization/activation via photolithographic patterning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LASL affords complete spatiotemporal control over protein activation.
Fig. 2: In-solution assembly of UnaG and NanoLuc through LASL of split-protein fragments.
Fig. 3: LASL enables site-specific patterned protein localization and split-protein assembly in biomaterials.
Fig. 4: LASL-mediated split-protein activation in mammalian cells.
Fig. 5: Synthetic route and characterization of Lys(oNB).
Fig. 6: Workflow of LASL split-protein design.
Fig. 7: Schematic overview of the workflow for LASL E. coli protein expression.
Fig. 8: Schematic overview of the workflow for LASL biomaterial incorporation.
Fig. 9: Schematic overview of the workflow for LASL mammalian protein expression.

Similar content being viewed by others

Data availability

All pertinent experimental and characterization data discussed in this protocol are available in the supporting primary research articles11,26 and within this paper. Plasmids generated during the study are available on Addgene or from the corresponding author upon reasonable request.

References

  1. Shekhawat, S. S. & Ghosh, I. Split-protein systems: beyond binary protein–protein interactions. Curr. Opin. Chem. Biol. 15, 789–797 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Michnick, S. W., Ear, P. H., Manderson, E. N., Remy, I. & Stefan, E. Universal strategies in research and drug discovery based on protein-fragment complementation assays. Nat. Rev. Drug Discov. 6, 569–582 (2007).

    CAS  PubMed  Google Scholar 

  3. Fink, T. et al. Design of fast proteolysis-based signaling and logic circuits in mammalian cells. Nat. Chem. Biol. 15, 115–122 (2019).

    CAS  PubMed  Google Scholar 

  4. Rihtar, E. et al. Chemically inducible split protein regulators for mammalian cells. Nat. Chem. Biol. 19, 64–71 (2023).

    CAS  PubMed  Google Scholar 

  5. Gao, Y. et al. Complex transcriptional modulation with orthogonal and inducible dCas9 regulators. Nat. Methods 13, 1043–1049 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Farrar, M. A., Alberola-lla, J. & Perlmutter, R. M. Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization. Nature 383, 178–181 (1996).

    CAS  PubMed  Google Scholar 

  7. Spencer, D. M., Wandless, T. J., Schreiber, S. L. & Crabtree, G. R. Controlling signal transduction with synthetic ligands. Science 262, 1019–1024 (1993).

    CAS  PubMed  Google Scholar 

  8. Kawano, F., Suzuki, H., Furuya, A. & Sato, M. Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nat. Commun. 6, 6256 (2015).

    CAS  PubMed  Google Scholar 

  9. Levskaya, A., Weiner, O. D., Lim, W. A. & Voigt, C. A. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461, 997–1001 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kennedy, M. J. et al. Rapid blue-light–mediated induction of protein interactions in living cells. Nat. Methods 7, 973–975 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ruskowitz, E. R. et al. Spatiotemporal functional assembly of split protein pairs through a light-activated SpyLigation. Nat. Chem. 15, 694–704 (2023).

    CAS  PubMed  Google Scholar 

  12. Zakeri, B. et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl Acad. Sci. USA 109, E690–7 (2012).

    PubMed  Google Scholar 

  13. Keeble, A. H. & Howarth, M. Power to the protein: enhancing and combining activities using the Spy toolbox. Chem. Sci. 11, 7281–7291 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Keeble, A. H. & Howarth, M. in Methods in Enzymology vol. 617 443–461 (Elsevier, 2019).

  15. Hoorens, M. W. H. & Szymanski, W. Reversible, spatial and temporal control over protein activity using light. Trends Biochem. Sci. 43, 567–575 (2018).

    CAS  PubMed  Google Scholar 

  16. Ruskowitz, E. R. & DeForest, C. A. Proteome-wide analysis of cellular response to ultraviolet light for biomaterial synthesis and modification. ACS Biomater. Sci. Eng. 5, 2111–2116 (2019).

    CAS  PubMed  Google Scholar 

  17. Chin, J. W. Expanding and reprogramming the genetic code. Nature 550, 53–60 (2017).

    CAS  PubMed  Google Scholar 

  18. Chen, P. R. et al. A facile system for encoding unnatural amino acids in mammalian cells. Angew. Chem. Int. Ed. 48, 4052–4055 (2009).

    CAS  Google Scholar 

  19. Young, T. S., Ahmad, I., Yin, J. A. & Schultz, P. G. An enhanced system for unnatural amino acid mutagenesis in E. coli. J. Mol. Biol. 395, 361–374 (2010).

    CAS  PubMed  Google Scholar 

  20. Yanagisawa, T. et al. Multistep engineering of Pyrrolysyl–tRNA synthetase to genetically encode Nɛ-(o-Azidobenzyloxycarbonyl) lysine for site-specific protein modification. Chem. Biol. 15, 1187–1197 (2008).

    CAS  PubMed  Google Scholar 

  21. Serfling, R. et al. Designer tRNAs for efficient incorporation of non-canonical amino acids by the pyrrolysine system in mammalian cells. Nucleic Acids Res. 46, 1–10 (2018).

    CAS  PubMed  Google Scholar 

  22. To, T.-L., Zhang, Q. & Shu, X. Structure-guided design of a reversible fluorogenic reporter of protein-protein interactions: design of a reversible fluorogenic reporter of PPIs. Protein Sci. 25, 748–753 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hall, M. P. et al. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem. Biol. 7, 1848–1857 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Guimaraes, C. P. et al. Site-specific C-terminal and internal loop labeling of proteins using sortase-mediated reactions. Nat. Protoc. 8, 1787–1799 (2013).

    PubMed  PubMed Central  Google Scholar 

  25. Mao, H., Hart, S. A., Schink, A. & Pollok, B. A. Sortase-mediated protein ligation: a new method for protein engineering. J. Am. Chem. Soc. 126, 2670–2671 (2004).

    CAS  PubMed  Google Scholar 

  26. Shadish, J. A., Benuska, G. M. & DeForest, C. A. Bioactive site-specifically modified proteins for 4D patterning of gel biomaterials. Nat. Mater. 18, 1005–1014 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gawade, P. M., Shadish, J. A., Badeau, B. A. & DeForest, C. A. Logic‐based delivery of site‐ specifically modified proteins from environmentally responsive hydrogel biomaterials. Adv. Mater. 31, 1902462 (2019).

    Google Scholar 

  28. Batalov, I., Stevens, K. R. & DeForest, C. A. Photopatterned biomolecule immobilization to guide three-dimensional cell fate in natural protein-based hydrogels. Proc. Natl Acad. Sci. USA 118, e2014194118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Agard, N. J., Prescher, J. A. & Bertozzi, C. R. A strain-promoted [3 + 2] azide−alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).

    CAS  PubMed  Google Scholar 

  30. DeForest, C. A., Polizzotti, B. D. & Anseth, K. S. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat. Mater. 8, 659–664 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Arakawa, C. K., Badeau, B. A., Zheng, Y. & DeForest, C. A. Multicellular vascularized engineered tissues through user‐programmable biomaterial photodegradation. Adv. Mater. 29, 1703156 (2017).

    Google Scholar 

  32. Badeau, B. A., Comerford, M. P., Arakawa, C. K., Shadish, J. A. & DeForest, C. A. Engineered modular biomaterial logic gates for environmentally triggered therapeutic delivery. Nat. Chem. 10, 251–258 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Szymczak, A. L. et al. Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide–based retroviral vector. Nat. Biotechnol. 22, 589–594 (2004).

    CAS  PubMed  Google Scholar 

  34. Roberts, P. J. et al. Rho family GTPase modification and dependence on CAAX motif-signaled posttranslational modification. J. Biol. Chem. 283, 25150–25163 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Keeble, A. H. et al. Approaching infinite affinity through engineering of peptide–protein interaction. Proc. Natl Acad. Sci. USA 116, 26523–26533 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Keeble, A. H. et al. DogCatcher allows loop-friendly protein–protein ligation. Cell Chem. Biol. 29, 339–350.e10 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu, X.-L., Liu, Y., Liu, D., Sun, F. & Zhang, W.-B. An intrinsically disordered peptide-peptide stapler for highly efficient protein ligation both in vivo and in vitro. J. Am. Chem. Soc. 140, 17474–17483 (2018).

    CAS  PubMed  Google Scholar 

  38. Fierer, J. O., Veggiani, G. & Howarth, M. SpyLigase peptide–peptide ligation polymerizes affibodies to enhance magnetic cancer cell capture. Proc. Natl Acad. Sci. USA 111, E1176–E1181 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Buldun, C. M., Jean, J. X., Bedford, M. R. & Howarth, M. Snoopligase catalyzes peptide– peptide locking and enables solid-phase conjugate isolation. J. Am. Chem. Soc. 140, 3008–3018 (2018).

    CAS  PubMed  Google Scholar 

  40. Lorand, L. & Graham, R. M. Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat. Rev. Mol. Cell Biol. 4, 140–156 (2003).

    CAS  PubMed  Google Scholar 

  41. Fegan, A., White, B., Carlson, J. C. T. & Wagner, C. R. Chemically controlled protein assembly: techniques and applications. Chem. Rev. 110, 3315–3336 (2010).

    CAS  PubMed  Google Scholar 

  42. Sun, J. & Sadelain, M. The quest for spatio-temporal control of CAR T cells. Cell Res. 25, 1281–1282 (2015).

    PubMed  PubMed Central  Google Scholar 

  43. Barlow, A. D., Nicholson, M. L. & Herbert, T. P. Evidence for rapamycin toxicity in pancreatic β-cells and a review of the underlying molecular mechanisms. Diabetes 62, 2674–2682 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hartzell, E. J., Terr, J. & Chen, W. Engineering a Blue Light Inducible SpyTag System (BLISS). J. Am. Chem. Soc. 143, 8572–8577 (2021).

    CAS  PubMed  Google Scholar 

  45. Wong, S., Mosabbir, A. A. & Truong, K. An engineered split intein for photoactivated protein trans-splicing. PLoS ONE 10, e0135965 (2015).

    PubMed  PubMed Central  Google Scholar 

  46. Cadet, J., Sage, E. & Douki, T. Ultraviolet radiation-mediated damage to cellular DNA. Mutat. Res. Mol. Mech. Mutagen. 571, 3–17 (2005).

    CAS  Google Scholar 

  47. Lawrence, K. P. et al. The UV/visible radiation boundary region (385–405 nm) damages skin cells and induces “dark” cyclobutane pyrimidine dimers in human skin in vivo. Sci. Rep. 8, 12722 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Kozmin, S. et al. UVA radiation is highly mutagenic in cells that are unable to repair 7,8-dihydro-8-oxoguanine in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 102, 13538–13543 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, W. et al. Optogenetic control with a photocleavable protein, PhoCl. Nat. Methods 14, 391–394 (2017).

    PubMed  Google Scholar 

  50. Coin, I., Beyermann, M. & Bienert, M. Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat. Protoc. 2, 3247–3256 (2007).

    CAS  PubMed  Google Scholar 

  51. Kawada, Y., Kodama, T., Miyashita, K., Imanishi, T. & Obika, S. Synthesis and evaluation of novel caged DNA alkylating agents bearing 3,4-epoxypiperidine structure. Org. Biomol. Chem. 10, 5102 (2012).

    CAS  PubMed  Google Scholar 

  52. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Dolberg, T. B. et al. Computation-guided optimization of split protein systems. Nat. Chem. Biol. 17, 531–539 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, X., Zaro, J. L. & Shen, W.-C. Fusion protein linkers: property, design and functionality. Adv. Drug Deliv. Rev. 65, 1357–1369 (2013).

    CAS  PubMed  Google Scholar 

  56. Phillips-Jones, M. K., Hill, L. S., Atkinson, J. & Martin, R. Context effects on misreading and suppression at UAG codons in human cells. Mol. Cell. Biol. 15, 6593–6600 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Beier, H. Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res. 29, 4767–4782 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Shadish, J. A. & DeForest, C. A. Site-selective protein modification: from functionalized proteins to functional biomaterials. Matter 2, 50–77 (2020).

    Google Scholar 

  59. Stoien, J. D. & Wang, R. J. Effect of near-ultraviolet and visible light on mammalian cells in culture. II. Formation of toxic photoproducts in tissue culture medium by blacklight. Proc. Natl Acad. Sci. USA 71, 3961–3965 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. DeForest, C. A. & Tirrell, D. A. A photoreversible protein-patterning approach for guiding stem cell fate in three-dimensional gels. Nat. Mater. 14, 523–531 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors recognize C. Butcher, T. Rapp, R. Francis, I. Kopyeva, R. Bretherton, M. Ross and N. Gregorio for feedback on the paper, as well as E. Ruskowitz, A. Strange, C. Butcher, S. Kurniawan and J. Filteau who further contributed to the original LASL manuscript. This work was supported by a CAREER Award (DMR 1652141 to C.A.D.) and grants (DMR 1807398 and CBET 1803054 to C.A.D.) from the National Science Foundation, as well as a Maximizing Investigators’ Research Award (R35GM138036 to C.A.D.) from the National Institutes of Health. Student fellowship support was provided by the Institute for Stem Cell and Regenerative Medicine (to B.G.M.-R.)

Author information

Authors and Affiliations

Authors

Contributions

Each author contributed equally in the preparation of this Protocol.

Corresponding author

Correspondence to Cole A. DeForest.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Cecile Echalier, Tae-Young Yoon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Ruskowitz, E. R. et al. Nat. Chem. 15, 694–704 (2023): https://doi.org/10.1038/s41557-023-01152-x

Shadish, J. A. et al. Nat. Mater. 18, 1005–1014 (2019): https://doi.org/10.1038/s41563-019-0367-7

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munoz-Robles, B.G., DeForest, C.A. Irreversible light-activated SpyLigation mediates split-protein assembly in 4D. Nat Protoc 19, 1015–1052 (2024). https://doi.org/10.1038/s41596-023-00938-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00938-0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing