Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Small RNA structural biochemistry in a post-sequencing era

Abstract

High-throughput sequencing has had an enormous impact on small RNA research during the past decade. However, sequencing only offers a one-dimensional view of the transcriptome and is often highly biased. Additionally, the ‘sequence, map and annotate’ approach, used widely in small RNA research, can lead to flawed interpretations of the data, lacking biological plausibility, due in part to database issues. Even in the absence of technical biases, the loss of three-dimensional information is a major limitation to understanding RNA stability, turnover and function. For example, noncoding RNA-derived fragments seem to exist mainly as dimers, tetramers or as nicked forms of their parental RNAs, contrary to widespread assumptions. In this perspective, we will discuss main sources of bias during small RNA-sequencing, present several useful bias-reducing strategies and provide guidance on the interpretation of small RNA-sequencing results, with emphasis on RNA fragmentomics. As sequencing offers a one-dimensional projection of a four-dimensional reality, prior structure-level knowledge is often needed to make sense of the data. Consequently, while less-biased sequencing methods are welcomed, integration of orthologous experimental techniques is also strongly recommended.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of small RNA-seq library preparation methods.
Fig. 2: Small RNA-seq does not provide an accurate representation of structured small RNAs.

Similar content being viewed by others

References

  1. Bartel, D. P. Metazoan microRNAs. Cell 173, 20–51 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang, X., Ramat, A., Simonelig, M. & Liu, M. F. Emerging roles and functional mechanisms of PIWI-interacting RNAs. Nat. Rev. Mol. Cell Biol. 24, 123–141 (2023).

    CAS  PubMed  Google Scholar 

  3. Shi, J., Zhou, T. & Chen, Q. Exploring the expanding universe of small RNAs. Nat. Cell Biol. 24, 415–423 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen, Q., Zhang, X., Shi, J., Yan, M. & Zhou, T. Origins and evolving functionalities of tRNA-derived small RNAs. Trends Biochem. Sci. 46, 790–804 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Costa, B. et al. Nicked tRNAs are stable reservoirs of tRNA halves in cells and biofluids. Proc. Natl Acad. Sci. USA 120, e2216330120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, X. & Wolin, S. L. Transfer RNA halves are found as nicked tRNAs in cells: evidence that nicked tRNAs regulate expression of an RNA repair operon. RNA https://doi.org/10.1261/rna.079575.122 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Drino, A. et al. Identification of RNA helicases with unwinding activity on angiogenin-processed tRNAs. Nucleic Acids Res. 51, 1326–1352 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Akiyama, Y. et al. RTCB complex regulates stress-induced tRNA cleavage. Int. J. Mol. Sci. 23, 13100 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Spitale, R. C. & Incarnato, D. Probing the dynamic RNA structurome and its functions. Nat. Rev. Genet. 24, 178–196 (2023).

    CAS  PubMed  Google Scholar 

  10. Giraldez, M. D. et al. Comprehensive multi-center assessment of small RNA-seq methods for quantitative miRNA profiling. Nat. Biotechnol. 36, 746–757 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hafner, M. et al. RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA cDNA libraries. RNA 17, 1697–1712 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hu, J. F. et al. Quantitative mapping of the cellular small RNA landscape with AQRNA-seq. Nat. Biotechnol. 39, 978–988 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Song, Y., Liu, K. J. & Wang, T. H. Elimination of ligation dependent artifacts in T4 RNA ligase to achieve high efficiency and low bias microRNA capture. PLoS ONE 9, e94619 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, Z., Lee, J. E., Riemondy, K., Anderson, E. M. & Yi, R. High-efficiency RNA cloning enables accurate quantification of miRNA expression by deep sequencing. Genome Biol. 14, R109 (2013).

    PubMed  PubMed Central  Google Scholar 

  15. Turchinovich, A. et al. Capture and amplification by tailing and switching (CATS): an ultrasensitive ligation-independent method for generation of DNA libraries for deep sequencing from picogram amounts of DNA and RNA. RNA Biol. 11, 817–828 (2014).

    PubMed  PubMed Central  Google Scholar 

  16. Zhu, Y. Y., Machleder, E. M., Chenchik, A., Li, R. & Siebert, P. D. Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques 30, 892–897 (2001).

    CAS  PubMed  Google Scholar 

  17. Upton, H. E. et al. Low-bias ncRNA libraries using ordered two-template relay: serial template jumping by a modified retroelement reverse transcriptase. Proc. Natl Acad. Sci. USA 118, e2107900118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wulf, M. G. et al. Non-templated addition and template switching by Moloney murine leukemia virus (MMLV)-based reverse transcriptases co-occur and compete with each other. J. Biol. Chem. 294, 18220–18231 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Dard-Dascot, C. et al. Systematic comparison of small RNA library preparation protocols for next-generation sequencing. BMC Genomics 19, 118 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Mohr, S. et al. Thermostable group II intron reverse transcriptase fusion proteins and their use in cDNA synthesis and next-generation RNA sequencing. RNA 19, 958–970 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zheng, G. et al. Efficient and quantitative high-throughput tRNA sequencing. Nat. Methods 12, 835–837 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nottingham, R. M. et al. RNA-seq of human reference RNA samples using a thermostable group II intron reverse transcriptase. RNA 22, 597–613 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu, H., Yao, J., Wu, D. C. & Lambowitz, A. M. Improved TGIRT-seq methods for comprehensive transcriptome profiling with decreased adapter dimer formation and bias correction. Sci. Rep. 9, 7953 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  24. Behrens, A., Rodschinka, G. & Nedialkova, D. D. High-resolution quantitative profiling of tRNA abundance and modification status in eukaryotes by mim-tRNAseq. Mol. Cell 81, 1802–1815.e7 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Heyer, E. E., Ozadam, H., Ricci, E. P., Cenik, C. & Moore, M. J. An optimized kit-free method for making strand-specific deep sequencing libraries from RNA fragments. Nucleic Acids Res. 43, (2015).

  26. Cozen, A. E. et al. ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. Nat. Methods 12, 879–884 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, H. et al. CPA-seq reveals small ncRNAs with methylated nucleosides and diverse termini. Cell Discov. 7, 25 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Shi, J. et al. PANDORA-seq expands the repertoire of regulatory small RNAs by overcoming RNA modifications. Nat. Cell Biol. 23, 424–436 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Pinkard, O., McFarland, S., Sweet, T. & Coller, J. Quantitative tRNA-sequencing uncovers metazoan tissue-specific tRNA regulation. Nat. Commun. 11, 4104 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shigematsu, M. et al. YAMAT-seq: an efficient method for high-throughput sequencing of mature transfer RNAs. Nucleic Acids Res. 45, e70 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Nolte’T Hoen, E. N. M. et al. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 40, 9272–9285 (2012).

    PubMed  Google Scholar 

  32. Tosar, J. P. et al. Assessment of small RNA sorting into different extracellular fractions revealed by high-throughput sequencing of breast cell lines. Nucleic Acids Res. 43, 5601–5616 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sharma, U. et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351, 391–396 (2016).

    ADS  CAS  PubMed  Google Scholar 

  34. Shurtleff, M. J. et al. Broad role for YBX1 in defining the small noncoding RNA composition of exosomes. Proc. Natl Acad. Sci. USA 114, E8987–E8995 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Tosar, J. P. et al. Fragmentation of extracellular ribosomes and tRNAs shapes the extracellular RNAome. Nucleic Acids Res. 48, 12874–12888 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gogakos, T. et al. Characterizing expression and processing of precursor and mature human tRNAs by hydro-tRNAseq and PAR-CLIP. Cell Rep. 20, 1463–1475 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Choi, J. H. & Sullivan, C. S. DUSP11 and triphosphate RNA balance during virus infection. PLoS Pathog. 17, (2021).

  38. Honda, S. et al. Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers. Proc. Natl Acad. Sci. USA 112, E3816–E3825 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Akat, K. M. et al. Detection of circulating extracellular mRNAs by modified small-RNA-sequencing analysis. JCI Insight 4, 127317 (2019).

    Google Scholar 

  40. Giraldez, M. D. et al. Phospho‐RNA‐seq: a modified small RNA‐seq method that reveals circulating mRNA and lncRNA fragments as potential biomarkers in human plasma. EMBO J. 38, (2019).

  41. Lentzsch, A. M., Yao, J., Russell, R. & Lambowitz, A. M. Template-switching mechanism of a group II intron-encoded reverse transcriptase and its implications for biological function and RNA-seq. J. Biol. Chem. 294, 19764–19784 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Tosar, J. P., Cayota, A., Eitan, E., Halushka, M. K. & Witwer, K. W. Ribonucleic artefacts: are some extracellular RNA discoveries driven by cell culture medium components? J. Extracell. Vesicles 6, 1272832 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. Auber, M., Fröhlich, D., Drechsel, O., Karaulanov, E. & Krämer-Albers, E.-M. Serum-free media supplements carry miRNAs that co-purify with extracellular vesicles. J. Extracell. Vesicles 8, 1656042 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Fromm, B. et al. A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome. Annu. Rev. Genet. 49, 213–242 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wei, Z., Batagov, A. O., Carter, D. R. F. & Krichevsky, A. M. Fetal bovine serum RNA interferes with the cell culture derived extracellular RNA. Sci. Rep. 6, 31175 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tosar, J. P., Cayota, A. & Witwer, K. Exomeres and supermeres: monolithic or diverse? J. Extracell. Biol. 1, e45 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Tosar, J. P., Rovira, C. & Cayota, A. Non-coding RNA fragments account for the majority of annotated piRNAs expressed in somatic non-gonadal tissues. Commun. Biol. 1, 2 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Tosar, J. P., García-Silva, M. R. & Cayota, A. Circulating SNORD57 rather than piR-54265 is a promising biomarker for colorectal cancer: Common pitfalls in the study of somatic piRNAs in cancer. RNA 27, 403–410 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tosar, J. P. et al. Dimerization confers increased stability to nucleases in 5′ halves from glycine and glutamic acid tRNAs. Nucleic Acids Res. 46, 9081–9093 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lyons, S. M., Gudanis, D., Coyne, S. M., Gdaniec, Z. & Ivanov, P. Identification of functional tetramolecular RNA G-quadruplexes derived from transfer RNAs. Nat. Commun. 8, 1127 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  51. Lyons, S. M. et al. eIF4G has intrinsic G-quadruplex binding activity that is required for tiRNA function. Nucleic Acids Res. 48, 6223–6233 (2021).

    Google Scholar 

  52. Loughrey, D., Watters, K. E., Settle, A. H. & Lucks, J. B. SHAPE-Seq 2.0: systematic optimization and extension of high-throughput chemical probing of RNA secondary structure with next generation sequencing. Nucleic Acids Res. 42, (2014).

  53. Zubradt, M. et al. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat. Methods 14, 75–82 (2017).

    CAS  PubMed  Google Scholar 

  54. Tosar, J. P., Gámbaro, F., Castellano, M. & Cayota, A. RI-SEC-seq: comprehensive profiling of nonvesicular extracellular RNAs with different stabilities. Bio Protoc. 11, e3918 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kharel, P. et al. Stress promotes RNA G-quadruplex folding in human cells. Nat. Commun. 14, 205 (2023).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kaymak, E. & Rando, O. J. Staying together after the breakup: tRNA halves in extracellular fluids. Proc. Natl Acad. Sci. USA 120, e2300300120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Munafò, M. R. & Smith, Davey G. Robust research needs many lines of evidence. Nature 553, 399–401 (2018).

    ADS  PubMed  Google Scholar 

  58. Lentzsch, A. M., Yao, J., Russell, R. & Lambowitz, A. M. Template-switching mechanism of a group II intron-encoded reverse transcriptase and its implications for biological function and RNA-Seq. J. Biol. Chem. 294, (2019).

  59. Almeida, M. V., de Jesus Domingues, A. M., Lukas, H., Mendez-Lago, M. & Ketting, R. F. RppH can faithfully replace TAP to allow cloning of 5′-triphosphate carrying small RNAs. MethodsX 6, (2019).

  60. Tosar, J. P., Rovira, C., Naya, H. & Cayota, A. Mining of public sequencing databases supports a non-dietary origin for putative foreign miRNAs: Underestimated effects of contamination in NGS. RNA 20, 754–757 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Tosar, J. P., Witwer, K. & Cayota, A. Revisiting extracellular RNA release, processing, and function. Trends Biochem. Sci. 46, 438–445 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen, Q. et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351, 397–400 (2016).

    ADS  CAS  PubMed  Google Scholar 

  63. Zhang, Y. et al. Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat. Cell Biol. 20, (2018).

  64. Sarker, G. et al. Maternal overnutrition programs hedonic and metabolic phenotypes across generations through sperm tsRNAs. Proc. Natl Acad. Sci. USA 116, (2019).

  65. Jimenez, N. A. et al. Paternal methotrexate exposure affects sperm small RNA content and causes craniofacial defects in the offspring. Nat. Commun. 14, 1617 (2023).

    ADS  Google Scholar 

  66. Boskovic, A., Bing, X. Y., Kaymak, E. & Rando, O. J. Control of noncoding RNA production and histone levels by a 5′ tRNA fragment. Genes Dev. 34, 118–131 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gustafsson, H. T. et al. Deep sequencing of yeast and mouse tRNAs and tRNA fragments using OTTR. Preprint at bioRxiv https://doi.org/10.1101/2022.02.04.479139(2022).

Download references

Acknowledgements

This work was partially funded by the National Institutes of Health Office of the Director (UG3/UH3CA241694) and Universidad de la República, Uruguay (CSIC I+D_2020_433).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pablo Tosar.

Ethics declarations

Competing interests

J.P.T., B.C. and A.C. have filed a patent in the United States on a method for RNA repair and sequencing.

Peer review

Peer review information

Nature Protocols thanks Brian Gregory and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tosar, J.P., Castellano, M., Costa, B. et al. Small RNA structural biochemistry in a post-sequencing era. Nat Protoc 19, 595–602 (2024). https://doi.org/10.1038/s41596-023-00936-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00936-2

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing