Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Mapping protein–RNA binding in plants with individual-nucleotide-resolution UV cross-linking and immunoprecipitation (plant iCLIP2)

Abstract

Despite crucial roles of RNA-binding proteins (RBPs) in plant physiology and development, methods for determining their transcriptome-wide binding landscape are less developed than those used in other model organisms. Cross-linking and immunoprecipitation (CLIP) methods (based on UV-mediated generation of covalent bonds between RNAs and cognate RBPs in vivo, purification of the cross-linked complexes and identification of the co-purified RNAs by high-throughput sequencing) have been applied mainly in mammalian cells growing in monolayers or in translucent tissue. We have developed plant iCLIP2, an efficient protocol for performing individual-nucleotide-resolution CLIP (iCLIP) in plants, tailored to overcome the experimental hurdles posed by plant tissue. We optimized the UV dosage to efficiently cross-link RNA and proteins in plants and expressed epitope-tagged RBPs under the control of their native promoters in loss-of-function mutants. We select epitopes for which nanobodies are available, allowing stringent conditions for immunopurification of the RNA–protein complexes to be established. To overcome the inherently high RNase content of plant cells, RNase inhibitors are added and the limited RNA fragmentation step is modified. We combine the optimized isolation of RBP-bound RNAs with iCLIP2, a streamlined protocol that greatly enhances the efficiency of library preparation for high-throughput sequencing. Plant researchers with experience in molecular biology and handling of RNA can complete this iCLIP2 protocol in ~5 d. Finally, we describe a bioinformatics workflow to determine targets of Arabidopsis RBPs from iCLIP data, covering all steps from downloading sequencing reads to identifying cross-linking events (https://github.com/malewins/Plant-iCLIPseq), and present the R/Bioconductor package BindingSiteFinder to extract reproducible binding sites (https://bioconductor.org/packages/release/bioc/html/BindingSiteFinder.html).

Key points

  • As in mammals, RBPs in plants are key regulators of the RNA life cycle. This protocol describes an optimized plant iCLIP method to define the transcriptome-wide RBP binding landscape at single-nucleotide resolution.

  • This plant iCLIP protocol, entailing UV cross-linking and nanobody-mediated precipitation of tagged RBP–RNA complexes, is optimized for efficient library preparation. A streamlined bioinformatics pipeline is also provided for the identification of RBP binding sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A schematic of the plant iCLIP2 procedure.
Fig. 2: A schematic outline of the bioinformatics workflow to obtain binding sites from Arabidopsis iCLIP data.
Fig. 3: Optimization of cross-linking, control IPs and RNase digestion.
Fig. 4: Timing of the plant iCLIP2 wet lab protocol.
Fig. 5: Western analysis of proteins recovered by IP.
Fig. 6: Oligonucleotides used in the individual steps of iCLIP2 library generation.
Fig. 7: Control for the efficiency of the first ProNex size selection.
Fig. 8: Second PCR (optimization PCR) and second ProNex size selection.
Fig. 9: Flow chart of the bioinformatics workflow to obtain binding sites from a sequenced plant iCLIP2 data.
Fig. 10: Script execution order for Arabidopsis iCLIP analysis with names and locations in the corresponding folder.
Fig. 11: Frequency of tetramers at the position of sample barcodes (positions 4–7).
Fig. 12: AtGRP7 iCLIP cross-links and reproducible binding sites on FLL2.
Fig. 13: Read quality and adapter content before and after processing.
Fig. 14: Representative results from binding site definition using the R/Bioconductor package BindingSiteFinder.

Similar content being viewed by others

Data availability

The AtGRP7 iCLIP dataset processed in the bioinformatics workflow is available through the Gene Expression Omnibus series GSE99427 or directly via SRA by the accession number SRR24391474. Source data are provided with this paper.

Code availability

All necessary code is publicly available under the Massachusetts Institute of Technology license. The R package BindingSiteFinder is accessible via the Bioconductor repository at https://bioconductor.org/packages/release/bioc/html/BindingSiteFinder.html. The scripts described in this publication are accessible via GitHub at https://github.com/malewins/Plant-iCLIPseq.

References

  1. Singh, G., Pratt, G., Yeo, G. W. & Moore, M. J. The clothes make the mRNA: past and present trends in mRNP fashion. Annu. Rev. Biochem. 84, 325–354 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hornyik, C., Terzi, L. C. & Simpson, G. G. The spen family protein FPA controls alternative cleavage and polyadenylation of RNA. Dev. Cell 18, 203–213 (2010).

    CAS  PubMed  Google Scholar 

  3. Macknight, R. et al. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89, 737–745 (1997).

    CAS  PubMed  Google Scholar 

  4. Sugliani, M., Brambilla, V., Clerkx, E. J., Koornneef, M. & Soppe, W. J. The conserved splicing factor SUA controls alternative splicing of the developmental regulator ABI3 in Arabidopsis. Plant Cell 22, 1936–1946 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Carvalho, R. F., Carvalho, S. D. & Duque, P. The plant-specific SR45 protein negatively regulates glucose and ABA signaling during early seedling development in Arabidopsis. Plant Physiol. 154, 772–783 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, X.-N. & Mount, S. M. Two alternatively spliced isoforms of the Arabidopsis thaliana SR45 protein have distinct roles during normal plant development. Plant Physiol. 150, 1450–1458 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. König, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17, 909–915 (2010).

    PubMed  PubMed Central  Google Scholar 

  8. König, J., Zarnack, K., Luscombe, N. M. & Ule, J. Protein–RNA interactions: new genomic technologies and perspectives. Nat. Rev. Genet. 13, 77–83 (2011).

    Google Scholar 

  9. Wang, Z. et al. iCLIP predicts the dual splicing effects of TIA–RNA interactions. PLoS Biol. 8, e1000530 (2010).

    PubMed  PubMed Central  Google Scholar 

  10. Huppertz, I. et al. iCLIP: Protein–RNA interactions at nucleotide resolution. Methods 65, 274–287 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Heintzen, C., Nater, M., Apel, K. & Staiger, D. AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 94, 8515–8520 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hackmann, C. et al. Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity. Plant Cell Envir. 37, 696–706 (2014).

    CAS  Google Scholar 

  13. Löhr, B., Streitner, C., Steffen, A., Lange, T. & Staiger, D. A glycine-rich RNA-binding protein affects gibberellin biosynthesis in Arabidopsis. Mol. Biol. Rep. 41, 439–445 (2014).

    PubMed  Google Scholar 

  14. Staiger, D. RNA-binding proteins and circadian rhythms in Arabidopsis thaliana. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 1755–1759 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Schmidt, F. et al. A proteomic analysis of oligo(dT)-bound mRNP containing oxidative stress-induced Arabidopsis thaliana RNA-binding proteins ATGRP7 and ATGRP8. Mol. Biol. Rep. 37, 839–845 (2010).

    CAS  PubMed  Google Scholar 

  16. Meyer, K. et al. Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7. Genome Biol. 18, 204 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. Mateos, J. L. & Staiger, D. Toward a systems view on RNA-binding proteins and associated RNAs in plants: guilt by association. Plant Cell 35, 1708–1726 (2023).

    PubMed  Google Scholar 

  18. Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

    Google Scholar 

  19. Streitner, C. et al. The small glycine-rich RNA-binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana. Plant J. 56, 239–250 (2008).

    CAS  PubMed  Google Scholar 

  20. Rothbauer, U. et al. A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins. Mol. Cell. Proteom. 7, 282–289 (2008).

    CAS  Google Scholar 

  21. Van Ende, R., Balzarini, S. & Geuten, K. Single and combined methods to specifically or bulk-purify RNA–protein complexes. Biomolecules 10, 1160 (2020).

    PubMed  PubMed Central  Google Scholar 

  22. Köster, T., Reichel, M. & Staiger, D. CLIP and RNA interactome studies to unravel genome-wide RNA-protein interactions in vivo in Arabidopsis thaliana. Methods 178, 63–71 (2020).

    PubMed  Google Scholar 

  23. Widjaja, I. et al. Combining subproteome enrichment and Rubisco depletion enables identification of low abundance proteins differentially regulated during plant defense. Proteomics 9, 138–147 (2009).

    CAS  PubMed  Google Scholar 

  24. Marondedze, C., Thomas, L., Serrano, N. L., Lilley, K. S. & Gehring, C. The RNA-binding protein repertoire of Arabidopsis thaliana. Sci. Rep. 6, 29766 (2016).

  25. Zhang, Z. et al. UV crosslinked mRNA-binding proteins captured from leaf mesophyll protoplasts. Plant Methods 12, 42 (2016).

    PubMed  PubMed Central  Google Scholar 

  26. Bach-Pages, M. et al. Discovering the RNA-binding proteome of plant leaves with an improved RNA interactome capture method. Biomolecules 10, 661 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Köster, T., Marondedze, C., Meyer, K. & Staiger, D. RNA-binding proteins revisited—the emerging Arabidopsis mRNA interactome. Trends Plant Sci. 22, 512–526 (2017).

    PubMed  Google Scholar 

  28. Briese, M. et al. A systems view of spliceosomal assembly and branchpoints with iCLIP. Nat. Struc. Mol. Biol. 26, 930–940 (2019).

    CAS  Google Scholar 

  29. Sutandy, F. X., Hildebrandt, A. & König, J. Profiling the binding sites of RNA-binding proteins with nucleotide resolution using iCLIP. Methods Mol. Biol. 1358, 175–195 (2016).

    PubMed  Google Scholar 

  30. Van Nostrand, E. L. et al. Robust, cost-effective profiling of RNA binding protein targets with single-end enhanced crosslinking and immunoprecipitation (seCLIP). Methods Mol. Biol. 1648, 177–200 (2017).

    PubMed  PubMed Central  Google Scholar 

  31. Zarnegar, B. J. et al. irCLIP platform for efficient characterization of protein–RNA interactions. Nat. Methods 13, 489–492 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Buchbender, A. et al. Improved library preparation with the new iCLIP2 protocol. Methods 178, 33–48 (2020).

    CAS  PubMed  Google Scholar 

  33. Van Nostrand, E. L. et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods 13, 508–514 (2016).

    PubMed  PubMed Central  Google Scholar 

  34. Köster, T. & Staiger, D. Plant individual nucleotide resolution crosslinking and immunoprecipitation to characterize RNA–protein complexes. Methods Mol. Biol. 2166, 255–268 (2020).

    PubMed  Google Scholar 

  35. Busch, A., Brüggemann, M., Ebersberger, S. & Zarnack, K. iCLIP data analysis: a complete pipeline from sequencing reads to RBP binding sites. Methods 178, 49–62 (2020).

    CAS  PubMed  Google Scholar 

  36. Arribas-Hernandez, L. et al. Principles of mRNA targeting via the Arabidopsis m(6)A-binding protein ECT2. eLife 10, e72375 (2021).

    PubMed  PubMed Central  Google Scholar 

  37. Lewinski, M., Bramkamp, Y., Köster, T. & Staiger, D. SEQing: web-based visualization of iCLIP and RNA-seq data in an interactive python framework. BMC Bioinforma. 21, 113 (2020).

    CAS  Google Scholar 

  38. Scutenaire, J. et al. The YTH domain protein ECT2 is an m6A reader required for normal trichome branching in Arabidopsis. Plant Cell 30, 986–1005 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Linder, B. et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12, 767 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Parker, M. T. et al. Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m6A modification. eLife 9, e49658 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Körtel, N. et al. Deep and accurate detection of m6A RNA modifications using miCLIP2 and m6Aboost machine learning. Nucleic Acids Res. 49, e92 (2021).

    PubMed  PubMed Central  Google Scholar 

  42. Wheeler, E. C., Van Nostrand, E. L. & Yeo, G. W. Advances and challenges in the detection of transcriptome-wide protein–RNA interactions. Wiley Interdiscip. Rev. RNA 1, e1436 (2017).

    Google Scholar 

  43. Hannigan, M. M., Zagore, L. L. & Licatalosi, D. D. Mapping transcriptome-wide protein–RNA interactions to elucidate RNA regulatory programs. Quant. Biol. 6, 228–238 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Terzi, L. C. & Simpson, G. G. Arabidopsis RNA immunoprecipitation. Plant J. 59, 163–168 (2009).

    CAS  PubMed  Google Scholar 

  45. Xing, D., Wang, Y., Hamilton, M., Ben-Hur, A. & Reddy, A. S. N. Transcriptome-wide identification of RNA targets of Arabidopsis SERINE/ARGININE-RICH45 uncovers the unexpected roles of this RNA-binding protein in RNA processing. Plant Cell 27, 3294–3308 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Köster, T. & Staiger, D. in Arabidopsis Protocols (eds. Sanchez-Serrano, J. J. & Salinas, J.) 453–461 (Springer, 2021).

  47. Zhang, Y. et al. Integrative genome-wide analysis reveals HLP1, a novel RNA-binding protein, regulates plant flowering by targeting alternative polyadenylation. Cell Res. 25, 864–876 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Licatalosi, D. D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, C. & Darnell, R. B. Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat. Biotechnol. 29, 607–614 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sugimoto, Y. et al. Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein–RNA interactions. Genome Biol. 13, R67 (2012).

    PubMed  PubMed Central  Google Scholar 

  51. Wu, Z. et al. RNA-binding proteins At RZ-1B and At RZ-1C play a critical role in regulation of pre-mRNA splicing and gene expression during Arabidopsis development. Plant Cell 28, 55–73 (2016).

    CAS  PubMed  Google Scholar 

  52. Van Nostrand, E. L. et al. Principles of RNA processing from analysis of enhanced CLIP maps for 150 RNA binding proteins. Genome Biol. 21, 90 (2020).

    PubMed  PubMed Central  Google Scholar 

  53. Van Nostrand, E. L. et al. A large-scale binding and functional map of human RNA-binding proteins. Nature 583, 711–719 (2020).

    PubMed  PubMed Central  Google Scholar 

  54. Burjoski, V. & Reddy, A. S. N. The landscape of RNA–protein interactions in plants: approaches and current status. Int. J. Mol. Sci. 22, 2845 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Brannan, K. W. et al. Robust single-cell discovery of RNA targets of RNA-binding proteins and ribosomes. Nat. Methods 18, 507–519 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. McMahon, A. C. et al. TRIBE: hijacking an RNA-editing enzyme to identify cell-specific targets of RNA-binding proteins. Cell 165, 742–753 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Xu, W., Rahman, R. & Rosbash, M. Mechanistic implications of enhanced editing by a hyperTRIBE RNA-binding protein. RNA 24, 173–182 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Endo, M., Shimizu, H., Nohales, M. A., Araki, T. & Kay, S. A. Tissue-specific clocks in Arabidopsis show asymmetric coupling. Nature 514, 419–422 (2014).

    Google Scholar 

  59. Balzarini, S., Van Ende, R., Voet, A. & Geuten, K. A widely applicable and cost-effective method for specific RNA–protein complex isolation. Sci. Rep. 13, 6898 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Frohnmeyer, H. & Staiger, D. Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol. 133, 1420–1428 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Heijde, M. & Ulm, R. UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci. 17, 230–237 (2012).

    CAS  PubMed  Google Scholar 

  62. Rahman, R., Xu, W., Jin, H. & Rosbash, M. Identification of RNA-binding protein targets with HyperTRIBE. Nat. Protoc. 13, 1829–1849 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Padrón, A., Iwasaki, S. & Ingolia, N. T. Proximity RNA labeling by APEX-Seq reveals the organization of translation initiation complexes and repressive RNA granules. Mol. Cell 75, 875–887.e875 (2019).

    PubMed  PubMed Central  Google Scholar 

  64. Sutandy, F. X. R. et al. In vitro iCLIP-based modeling uncovers how the splicing factor U2AF2 relies on regulation by cofactors. Genome Res. 28, 699–713 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sharma, D. et al. The kinetic landscape of an RNA-binding protein in cells. Nature 591, 152–156 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zarnack, K. et al. Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell 152, 453–466 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Chakrabarti, A., Haberman, N., Praznik, A., Luscombe, N. & Ule, J. Data science issues in studying protein–RNA interactions with CLIP technologies. Annu. Rev. Biomed. Data Sci. 1, 235–261 (2018).

    PubMed  PubMed Central  Google Scholar 

  68. Licatalosi, D. D. & Darnell, R. B. RNA processing and its regulation: global insights into biological networks. Nat. Rev. Genet 11, 75–87 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Castello, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012).

    CAS  PubMed  Google Scholar 

  70. Zhang, R. et al. A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing. Nucleic Acids Res. 45, 5061–5073 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lamesch, P. et al. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 40, D1202–D1210 (2012).

    CAS  PubMed  Google Scholar 

  72. Gregory, T. R. in The Evolution of the Genome (ed. Gregory, T. R.) 3–87 (Academic Press, 2005).

  73. Blue, S. M. et al. Transcriptome-wide identification of RNA-binding protein binding sites using seCLIP-seq. Nat. Protoc. 17, 1223–1265 (2022).

    CAS  PubMed  Google Scholar 

  74. Thorvaldsdóttir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinforma. 14, 178–192 (2013).

    Google Scholar 

  75. Streitner, C. et al. An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with target transcripts in Arabidopsis thaliana. Nucleic Acids Res. 40, 11240–11255 d (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497 (1962).

    CAS  Google Scholar 

  77. Kent, W. J., Zweig, A. S., Barber, G., Hinrichs, A. S. & Karolchik, D. BigWig and BigBed: enabling browsing of large distributed datasets. Bioinformatics 26, 2204–2207 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Dodt, M., Roehr, J. T., Ahmed, R. & Dieterich, C. FLEXBAR—flexible barcode and adapter processing for next-generation sequencing platforms. Biology 1, 895–905 (2012).

    PubMed  PubMed Central  Google Scholar 

  79. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  PubMed  Google Scholar 

  80. Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021).

    PubMed  PubMed Central  Google Scholar 

  81. Krakau, S., Richard, H. & Marsico, A. PureCLIP: capturing target-specific protein–RNA interaction footprints from single-nucleotide CLIP-seq data. Genome Biol. 18, 240 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Neudorf and E. Klemme for expert technical assistance throughout the development of the procedure. Work in our laboratories is supported by the German Research Foundation through grants STA653/14-1, 15-1 and 19-1 to D.S., SPP 1935 ZA881/5-2 and FOR 2333 ZA881/3-1 to K.Z., SPP 1935 KO4566/3-2 and FOR 2333 KO4566/5-1 to J.K., and by a postdoctoral fellowship of the Alexander von Humboldt Foundation to M.R.

Author information

Authors and Affiliations

Authors

Contributions

T.K., M.R. and K.M. developed the experimental methods. M.L. developed the processing part of the bioinformatics workflow. M.B. developed the R/Bioconductor package BindingSiteFinder. D.S. and J.K. directed the development of the experimental methods. K.Z. directed the development of the bioinformatics workflow. M.R. assembled part 1 of the procedure pertaining to the experimental protocol. M.L. and M.B. assembled part 2 of the procedure pertaining to the bioinformatics workflow. T.B. assembled the Materials section. K.M. produced the data in Fig. 2. D.S. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Dorothee Staiger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Oliver Rossbach and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Meyer, K. et al. Genome Biol. 18, 204 (2017): https://doi.org/10.1186/s13059-017-1332-x

Arribas-Hernandez, L. et al. eLife 10, e72375 (2021): https://doi.org/10.7554/eLife.72375

Buchbender, A. et al. Methods 178, 33–48 (2020): https://doi.org/10.1016/j.ymeth.2019.10.003

Busch, A. et al. Methods 178, 49–62 (2020): https://doi.org/10.1016/j.ymeth.2019.11.008

Source data

Source Data Fig. 3

Unprocessed radiograms and blot.

Source Data Fig. 5

Unprocessed gel and blots.

Source Data Fig. 7

Unprocessed gel.

Source Data Fig. 8

Unprocessed gels.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewinski, M., Brüggemann, M., Köster, T. et al. Mapping protein–RNA binding in plants with individual-nucleotide-resolution UV cross-linking and immunoprecipitation (plant iCLIP2). Nat Protoc 19, 1183–1234 (2024). https://doi.org/10.1038/s41596-023-00935-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00935-3

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing