Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

An end-to-end workflow for nondestructive 3D pathology

Abstract

Recent advances in 3D pathology offer the ability to image orders of magnitude more tissue than conventional pathology methods while also providing a volumetric context that is not achievable with 2D tissue sections, and all without requiring destructive tissue sectioning. Generating high-quality 3D pathology datasets on a consistent basis, however, is not trivial and requires careful attention to a series of details during tissue preparation, imaging and initial data processing, as well as iterative optimization of the entire process. Here, we provide an end-to-end procedure covering all aspects of a 3D pathology workflow (using light-sheet microscopy as an illustrative imaging platform) with sufficient detail to perform well-controlled preclinical and clinical studies. Although 3D pathology is compatible with diverse staining protocols and computationally generated color palettes for visual analysis, this protocol focuses on the use of a fluorescent analog of hematoxylin and eosin, which remains the most common stain used for gold-standard pathological reports. We present our guidelines for a broad range of end users (e.g., biologists, clinical researchers and engineers) in a simple format. The end-to-end workflow requires 3–6 d to complete, bearing in mind that data analysis may take longer.

Key points

  • The protocol details tissue preparation and staining using TO-PRO-3, a fluorescent analog of hematoxylin, and eosin. Tissue imaging using light-sheet fluorescence microscopy is described, including strategies for quality control in tissue preparation and 3D microscopy.

  • A fully open-source workflow requiring basic programming skills in Python is explained for initial 3D data processing, such as stitching, intensity leveling and digital staining to mimic the appearance of standard H&E histology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Protocol overview.
Fig. 2: Image atlas showing Path3D datasets of archived human pathology specimens.
Fig. 3: Photos showing key tissue-processing steps.
Fig. 4: Example bead phantom and point spread function data.
Fig. 5: Examples of high- and low-quality tissue datasets.

Similar content being viewed by others

Data availability

Because of the large size of the imaging datasets shown in this paper, the datasets are not available in a public repository. They are available from the authors upon request.

Code availability

All code used in this protocol is provided on GitHub. For license information, please see the corresponding GitHub page. PSF computation: https://github.com/LiuBiophotonicsLab/Bead_PSF_computation; FalseColor-Python: https://github.com/serrob23/falsecolor; normalizing signal levels: https://github.com/LiuBiophotonicsLab/FixImage3D.

References

  1. Liu, J. T. C. et al. Harnessing non-destructive 3D pathology. Nat. Biomed. Eng. 5, 203–218 (2021).

    PubMed  PubMed Central  Google Scholar 

  2. Liu, J. T. C., Glaser, A. K., Poudel, C. & Vaughan, J. C. Nondestructive 3D pathology with light-sheet fluorescence microscopy for translational research and clinical assays. Annu. Rev. Anal. Chem. 16, 231–252 (2023).

    CAS  Google Scholar 

  3. Xie, W. et al. Prostate cancer risk stratification via nondestructive 3D pathology with deep learning–assisted gland analysis. Cancer Res. 82, 334–345 (2022).

    CAS  PubMed  Google Scholar 

  4. Serafin, R. et al. Nondestructive 3D pathology with analysis of nuclear features for prostate cancer risk assessment. J. Pathol. 260, 390–401 (2023).

    CAS  PubMed  Google Scholar 

  5. Erion Barner, L. A. et al. AI-triaged 3D pathology to improve detection of esophageal neoplasia while reducing pathologist workloads. Mod. Pathol. 36, 100322 (2023).

    PubMed  Google Scholar 

  6. Klingberg, A. et al. Fully automated evaluation of total glomerular number and capillary tuft size in nephritic kidneys using lightsheet microscopy. J. Am. Soc. Nephrol. 28, 452–459 (2017).

    CAS  PubMed  Google Scholar 

  7. Ertürk, A. et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat. Protoc. 7, 1983–1995 (2012).

    PubMed  Google Scholar 

  8. Renier, N. et al. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159, 896–910 (2014).

    CAS  PubMed  Google Scholar 

  9. McGorty, R. et al. Open-top selective plane illumination microscope for conventionally mounted specimens. Opt. Express 23, 16142–16153 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. McGorty, R., Xie, D. & Huang, B. High-NA open-top selective-plane illumination microscopy for biological imaging. Opt. Express 25, 17798–17810 (2017).

    PubMed  PubMed Central  Google Scholar 

  11. Glaser, A. K. et al. Light-sheet microscopy for slide-free non-destructive pathology of large clinical specimens. Nat. Biomed. Eng. 1, 1–10 (2017).

    Google Scholar 

  12. Glaser, A. K. et al. Multi-immersion open-top light-sheet microscope for high-throughput imaging of cleared tissues. Nat. Commun. 10, 2781 (2019).

    PubMed  PubMed Central  Google Scholar 

  13. Barner, L. A., Glaser, A. K., Huang, H., True, L. D. & Liu, J. T. C. Multi-resolution open-top light-sheet microscopy to enable efficient 3D pathology workflows. Biomed. Opt. Express 11, 6605–6619 (2020).

    PubMed  PubMed Central  Google Scholar 

  14. Glaser, A. K. et al. A hybrid open-top light-sheet microscope for versatile multi-scale imaging of cleared tissues. Nat. Methods 19, 613–619 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Power, R. M. & Huisken, J. A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat. Methods 14, 360–373 (2017).

    CAS  PubMed  Google Scholar 

  16. Hillman, E. M. C., Voleti, V., Li, W. & Yu, H. Light-sheet microscopy in neuroscience. Annu. Rev. Neurosci. 42, 295–313 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Stelzer, E. H. K. et al. Light sheet fluorescence microscopy. Nat. Rev. Methods Prim. 1, 1–25 (2021).

    Google Scholar 

  18. Daetwyler, S. & Fiolka, R. P. Light-sheets and smart microscopy, an exciting future is dawning. Commun. Biol. 6, 1–11 (2023).

    Google Scholar 

  19. Dunsby, C. Optically sectioned imaging by oblique plane microscopy. Opt. Express 16, 20306–20316 (2008).

    CAS  PubMed  Google Scholar 

  20. Li, T. et al. Axial plane optical microscopy. Sci. Rep. 4, 7253 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bouchard, M. B. et al. Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms. Nat. Photonics 9, 113–119 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumar, M., Kishore, S., Nasenbeny, J., McLean, D. L. & Kozorovitskiy, Y. Integrated one- and two-photon scanned oblique plane illumination (SOPi) microscopy for rapid volumetric imaging. Opt. Express 26, 13027–13041 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Voleti, V. et al. Real-time volumetric microscopy of in vivo dynamics and large-scale samples with SCAPE 2.0. Nat. Methods 16, 1054–1062 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, B. et al. Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution. Nat. Methods 16, 501–504 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Millett-Sikking, A. & York, A. AndrewGYork/high_na_single_objective_lightsheet: Work-in-progress. Available at https://zenodo.org/records/3376243 (2019).

  26. Hoffmann, M. & Judkewitz, B. Diffractive oblique plane microscopy. Optica 6, 1166–1170 (2019).

    Google Scholar 

  27. Kim, J. et al. Oblique-plane single-molecule localization microscopy for tissues and small intact animals. Nat. Methods 16, 853–857 (2019).

    CAS  PubMed  Google Scholar 

  28. Sapoznik, E. et al. A versatile oblique plane microscope for large-scale and high-resolution imaging of subcellular dynamics. eLife 9, e57681 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang, B. et al. DaXi—high-resolution, large imaging volume and multi-view single-objective light-sheet microscopy. Nat. Methods 19, 461–469 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bria, A. & Iannello, G. TeraStitcher—a tool for fast automatic 3D-stitching of teravoxel-sized microscopy images. BMC Bioinforma. 13, 316 (2012).

    Google Scholar 

  31. Scholler, J. et al. Efficient image analysis for large-scale next generation histopathology using pAPRica. Preprint at bioRxiv https://doi.org/10.1101/2023.01.27.525687 (2023).

  32. The HDF Group, N. & Koziol, Q. HDF5-Version 1.12.0. https://www.osti.gov/biblio/1631295 (2020).

  33. Miles, A. et al. zarr-developers/zarr-python: v2.16.0. https://zenodo.org/records/8169545 (2023).

  34. Moore, J. et al. OME-NGFF: a next-generation file format for expanding bioimaging data-access strategies. Nat. Methods 18, 1496–1498 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Saalfeld, S. et al. saalfeldlab/n5: n5-2.5.1. https://zenodo.org/records/6578232 (2022).

  36. Hörl, D. et al. BigStitcher: reconstructing high-resolution image datasets of cleared and expanded samples. Nat. Methods 16, 870–874 (2019).

    PubMed  Google Scholar 

  37. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  PubMed  Google Scholar 

  38. Elfer, K. N. et al. DRAQ5 and eosin (‘D&E’) as an analog to hematoxylin and eosin for rapid fluorescence histology of fresh tissues. PLoS One 11, e0165530 (2016).

    PubMed  PubMed Central  Google Scholar 

  39. Rivenson, Y., de Haan, K., Wallace, W. D. & Ozcan, A. Emerging advances to transform histopathology using virtual staining. BME Front. 2020, 9647163 (2020).

    PubMed  PubMed Central  Google Scholar 

  40. Chen, Z., Yu, W., Wong, I. H. M. & Wong, T. T. W. Deep-learning-assisted microscopy with ultraviolet surface excitation for rapid slide-free histological imaging. Biomed. Opt. Express 12, 5920–5938 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Boktor, M. et al. Virtual histological staining of label-free total absorption photoacoustic remote sensing (TA-PARS). Sci. Rep. 12, 10296 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang, X. et al. Virtual stain transfer in histology via cascaded deep neural networks. ACS Photonics 9, 3134–3143 (2022).

    CAS  Google Scholar 

  43. Rana, A. et al. Use of deep learning to develop and analyze computational hematoxylin and eosin staining of prostate core biopsy images for tumor diagnosis. JAMA Netw. Open 3, e205111 (2020).

    PubMed  PubMed Central  Google Scholar 

  44. Giacomelli, M. G. et al. Virtual hematoxylin and eosin transillumination microscopy using epi-fluorescence imaging. PLoS One 11, e0159337 (2016).

    PubMed  PubMed Central  Google Scholar 

  45. Serafin, R., Xie, W., Glaser, A. K. & Liu, J. T. C. FalseColor-Python: a rapid intensity-leveling and digital-staining package for fluorescence-based slide-free digital pathology. PLoS One 15, e0233198 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ahlers, J. et al. napari: a multi-dimensional image viewer for Python. https://zenodo.org/records/8115575 (2023).

  47. Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. Jansen, I. et al. Three-dimensional histopathological reconstruction of bladder tumours. Diagn. Pathol. 14, 25 (2019).

    PubMed  PubMed Central  Google Scholar 

  49. Liimatainen, K., Latonen, L., Valkonen, M., Kartasalo, K. & Ruusuvuori, P. Virtual reality for 3D histology: multi-scale visualization of organs with interactive feature exploration. BMC Cancer 21, 1133 (2021).

    PubMed  PubMed Central  Google Scholar 

  50. Barner, L. A., Glaser, A. K., True, L. D., Reder, N. P. & Liu, J. T. C. Solid immersion meniscus lens (SIMlens) for open-top light-sheet microscopy. Opt. Lett. 44, 4451–4454 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Barner, L. A. et al. Multiresolution nondestructive 3D pathology of whole lymph nodes for breast cancer staging. J. Biomed. Opt. 27, 036501 (2022).

    PubMed  PubMed Central  Google Scholar 

  52. Reder, N. P. et al. Open-top light-sheet microscopy image atlas of prostate core needle biopsies. Arch. Pathol. Lab. Med. 143, 1069–1075 (2019).

    PubMed  PubMed Central  Google Scholar 

  53. Reddi, D. M. et al. Nondestructive 3D pathology image atlas of Barrett esophagus with open-top light-sheet microscopy. Arch. Pathol. Lab. Med. 147, 1164–1171 (2023).

    PubMed  Google Scholar 

  54. Horowitz, L. F. et al. Microdissected “cuboids” for microfluidic drug testing of intact tissues. Lab Chip 21, 122–142 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bera, K., Schalper, K. A., Rimm, D. L., Velcheti, V. & Madabhushi, A. Artificial intelligence in digital pathology—new tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 16, 703–715 (2019).

    PubMed  PubMed Central  Google Scholar 

  56. Lee, M. Y. et al. Fluorescent labeling of abundant reactive entities (FLARE) for cleared-tissue and super-resolution microscopy. Nat. Protoc. 17, 819–846 (2022).

    CAS  PubMed  Google Scholar 

  57. Gao, G. et al. Comprehensive surface histology of fresh resection margins with rapid Open-Top Light-Sheet (OTLS) microscopy. IEEE Trans. Biomed. Eng. 70, 2160–2171 (2023).

    PubMed  Google Scholar 

  58. Huisman, A., Ploeger, L. S., Dullens, H. F. J., Beekhuis, J. T. C. & van Diest, P. J. A restaining method to restore faded fluorescence in tissue specimens for quantitative confocal microscopy. Cytom. A 71, 875–881 (2007).

    Google Scholar 

  59. Hinton, J. P. et al. A method to reuse archived H&E stained histology slides for a multiplex protein biomarker analysis. Methods Protoc. 2, 86 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Mayerich, D., Abbott, L. & McCormick, B. Knife-edge scanning microscopy for imaging and reconstruction of three-dimensional anatomical structures of the mouse brain. J. Microsc. 231, 134–143 (2008).

    CAS  PubMed  Google Scholar 

  61. Li, A. et al. Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science 330, 1404–1408 (2010).

    CAS  PubMed  Google Scholar 

  62. Gong, H. et al. Continuously tracing brain-wide long-distance axonal projections in mice at a one-micron voxel resolution. NeuroImage 74, 87–98 (2013).

    PubMed  Google Scholar 

  63. Wong, T. T. W. et al. Label-free automated three-dimensional imaging of whole organs by microtomy-assisted photoacoustic microscopy. Nat. Commun. 8, 1386 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. Yu, W. et al. Translational rapid ultraviolet-excited sectioning tomography for whole-organ multicolor imaging with real-time molecular staining. eLife 11, e81015 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kolluru, C. et al. Imaging peripheral nerve micro-anatomy with MUSE, 2D and 3D approaches. Sci. Rep. 12, 10205 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen, Y. et al. Rapid pathology of lumpectomy margins with open-top light-sheet (OTLS) microscopy. Biomed. Opt. Express 10, 1257–1272 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Murray, E. et al. Simple, scalable proteomic imaging for high-dimensional profiling of intact systems. Cell 163, 1500–1514 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim, S.-Y. et al. Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. Proc. Natl Acad. Sci. USA 112, E6274–E6283 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Park, Y.-G. et al. Protection of tissue physicochemical properties using polyfunctional crosslinkers. Nat. Biotechnol. 37, 73–83 (2019).

    CAS  Google Scholar 

  70. Zhao, S. et al. Cellular and molecular probing of intact human organs. Cell 180, 796–812.e19 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ku, T. et al. Elasticizing tissues for reversible shape transformation and accelerated molecular labeling. Nat. Methods 17, 609–613 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Susaki, E. A. et al. Versatile whole-organ/body staining and imaging based on electrolyte-gel properties of biological tissues. Nat. Commun. 11, 1982 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Belle, M. et al. A simple method for 3D analysis of immunolabeled axonal tracts in a transparent nervous system. Cell Rep. 9, 1191–1201 (2014).

    CAS  PubMed  Google Scholar 

  74. Pan, C. et al. Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat. Methods 13, 859–867 (2016).

    CAS  PubMed  Google Scholar 

  75. Cai, R. et al. Whole-mouse clearing and imaging at the cellular level with vDISCO. Nat. Protoc. 18, 1197–1242 (2023).

    CAS  PubMed  Google Scholar 

  76. Weiss, K. R., Voigt, F. F., Shepherd, D. P. & Huisken, J. Tutorial: practical considerations for tissue clearing and imaging. Nat. Protoc. 16, 2732–2748 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Laurino, A. et al. A guide to perform 3D histology of biological tissues with fluorescence microscopy. Int. J. Mol. Sci. 24, 6747 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Susaki, E. A. et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157, 726–739 (2014).

    CAS  PubMed  Google Scholar 

  79. Tainaka, K. et al. Whole-body imaging with single-cell resolution by tissue decolorization. Cell 159, 911–924 (2014).

    CAS  PubMed  Google Scholar 

  80. Susaki, E. A. et al. Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat. Protoc. 10, 1709–1727 (2015).

    CAS  PubMed  Google Scholar 

  81. Jing, D. et al. Tissue clearing of both hard and soft tissue organs with the PEGASOS method. Cell Res. 28, 803–818 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu, Y., Levenson, R. M. & Jenkins, M. W. Slide over: advances in slide-free optical microscopy as drivers of diagnostic pathology. Am. n J. Pathol. 192, 180–194 (2022).

    Google Scholar 

  83. Abeytunge, S. et al. Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue. J. Biomed. Opt. 18, 61227 (2013).

    PubMed  Google Scholar 

  84. Tao, Y. K. et al. Assessment of breast pathologies using nonlinear microscopy. Proc. Natl Acad. Sci. USA 111, 15304–15309 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Tu, H. et al. Stain-free histopathology by programmable supercontinuum pulses. Nat. Photonics 10, 534–540 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Yoshitake, T. et al. Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue. J. Biomed. Opt. 21, 126021 (2016).

    PubMed  PubMed Central  Google Scholar 

  87. van Royen, M. E. et al. Three-dimensional microscopic analysis of clinical prostate specimens. Histopathology 69, 985–992 (2016).

    PubMed  Google Scholar 

  88. Olson, E., Levene, M. J. & Torres, R. Multiphoton microscopy with clearing for three dimensional histology of kidney biopsies. Biomed. Opt. Express 7, 3089–3096 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Balázs, B., Deschamps, J., Albert, M., Ries, J. & Hufnagel, L. A real-time compression library for microscopy images. Preprint at bioRxiv https://doi.org/10.1101/164624 (2017).

  90. Di, S. & Cappello, F. Fast error-bounded lossy HPC data compression with SZ. 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS) (pp. 730–739. IEEE, Piscataway, New Jersey, USA, 2016).

    Google Scholar 

  91. Masselink, W. et al. Broad applicability of a streamlined ethyl cinnamate-based clearing procedure. Development 146, dev166884 (2019).

    PubMed  Google Scholar 

  92. ven der Walt, S. et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014).

    Google Scholar 

  93. Gohlke, C. cgohlke/tifffile: v2023.7.18. https://zenodo.org/record/8165780 (2023).

  94. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Crameri, F., Shephard, G. E. & Heron, P. J. The misuse of colour in science communication. Nat. Commun. 11, 5444 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the National Institutes of Health (NIH): R01EB031002 and R01CA268207 (J.T.C.L.); R00CA240681 (A.K.G.); U01CA239055, 1R01LM013864, 1U01DK133090, U01CA248226 and 2R01DK118431 (A.J.); the Pacific Northwest Prostate Cancer SPORE P50CA097186 (L.D.T.); and the Indiana Center for Advanced Renal Microscopy and Molecular Imaging U54DK137328 (J.C.V. and J.T.C.L.); the National Science Foundation (NSF): 1934292 HDR: I-DIRSE-FW (J.T.C.L.) and NSF Graduate Research Fellowships DGE-1762114 (K.W.B. and L.A.E.B.); the Department of Defense (DoD) Prostate Cancer Research Program: W81XWH-20-1-0851 (J.T.C.L.) and W81XWH-18-10358 (L.D.T. and J.T.C.L.); Prostate Cancer UK: MA-ETNA19-005 (J.T.C.L.); and a Washington Research Foundation Postdoctoral Fellowship (C.P.). The authors also thank the following individuals for assistance with specimen collection and preparation for data presented in this manuscript: Suzanne M. Dintzis, Michael C. Haffner, Priti Lal, Chenyi Mao, Michelle M. Martinez Irizarry, Nick P. Reder, Deepti M. Reddi, Ruben M. Sandoval, Etsuo A. Susaki and Inti Zlobec. Finally, the authors acknowledge the Canary Foundation and the University of Washington Center for Laboratory Animal Training Resources for providing some specimens used in this study.

Author information

Authors and Affiliations

Authors

Contributions

L.A.E.B., Q.H., E.B., L.L., C.P., G.G., A.K.G., H.H., L.D.T., S.K., J.C.V. and J.T.C.L. developed the tissue preparation methods. K.W.B., L.A.E.B, A.K.G. and J.T.C.L. developed the 3D microscopy methods. Q.H., E.B., G.G., R.B.S., S.S.L.C., A.K.G., A.J. and J.T.C.L. developed the data-processing methods. K.W.B., L.A.E.B., E.B., L.L., G.G., R.B.S., L.D.T., S.K. and J.T.C.L. developed the quality control methods. K.W.B., L.A.E.B, Q.H., E.B., L.L., C.P., G.G., R.B.S., A.K.G., H.H. and D.M. performed experiments and analyzed data. K.W.B., L.A.E.B. and J.T.C.L. led writing of the manuscript with assistance from D.B. All authors contributed to the manuscript.

Corresponding author

Correspondence to Jonathan T. C. Liu.

Ethics declarations

Competing interests

J.T.C.L. is a cofounder, equity holder and board member of Alpenglow Biosciences, Inc. A.K.G. and L.D.T. are cofounders and equity holders of Alpenglow Biosciences, Inc. A.J. provides consulting for Merck, Lunaphore and Roche and has a sponsored research agreement with Roche. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Michael W. Jenkins and Terence Tsz Wai Wong for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Erion Barner, L. A. et al. Mod. Pathol. 36, 100322 (2023): https://doi.org/10.1016/j.modpat.2023.100322

Serafin, R. et al. J. Pathol. 260, 390–401 (2023): https://doi.org/10.1002/path.6090

Glaser, A. K. et al. Nat. Methods 19, 613–619 (2022): https://doi.org/10.1038/s41592-022-01468-5

Xie, W. et al. Cancer Res. 82, 334–345 (2022): https://doi.org/10.1158/0008-5472.CAN-21-2843

Serafin, R. et al. PLoS One 15, e0233198 (2020): https://doi.org/10.1371/journal.pone.0233198

Supplementary information

Supplementary Information

Supplementary Notes 1–3 and Figs. 1–10

Reporting Summary

Supplementary Video

Video abstract, including volumetric renderings and 2D cross sections of Path3D datasets false-colored to mimic the appearance of standard H&E staining (human prostate biopsy and Barrett’s esophagus)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bishop, K.W., Erion Barner, L.A., Han, Q. et al. An end-to-end workflow for nondestructive 3D pathology. Nat Protoc 19, 1122–1148 (2024). https://doi.org/10.1038/s41596-023-00934-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00934-4

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing