Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Production and use of antigen tetramers to study antigen-specific B cells

Abstract

B cells generate antibodies that provide protection from infection, but also cause pathology in autoimmune and allergic conditions. Antigen-specific B cells can be detected by binding their surface antibody receptors with native antigens conjugated to fluorescent probes, a technique that has revealed substantial insight into B cell activation and function. This protocol describes the process of generating fluorescent antigen tetramer probes and delineates a process of enriching large samples based on antigen-specificity for high-resolution analyses of the antigen-specific B cell repertoire. Enrichment of tetramer-binding cells allows for detection of antigen-specific B cells as rare as 1 in 100 million cells, providing sufficient resolution to study naive B cells and IgE-expressing cells by flow cytometry. The generation of antigen tetramers involves antigen biotinylation, assessment of biotin:antigen ratio for optimal tetramer loading and polymerization around a streptavidin–fluorophore backbone. We also describe the construction of a control tetramer to exclude B cells binding to the tetramer backbone. We provide a framework to validate whether tetramer probes are detecting true antigen-specific B cells and discuss considerations for experimental design. This protocol can be performed by researchers trained in basic biomedical/immunological research techniques, using instrumentation commonly found in most laboratories. Constructing the antigen and control tetramers takes 9 h, though their specificity should be assessed before experimentation and may take weeks to months depending on the method of validation. Sample enrichment requires ~2 h but is generally time and cost neutral as fewer cells are run through the flow cytometer.

Key points

  • The protocol describes the design of antigen-specific tetramer probes for the enrichment and identification of rare antigen-specific B cells. The selected antigen is first biotinylated in a biotin:antigen ratio <1:1 and then assembled around a streptavidin fluorescent backbone.

  • Isolation of antigen-specific B cells relies on the accurate design of control tetramers that do not share any known cross-reactive epitopes with the target antigen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the protocol.
Fig. 2: Hierarchy of evidence for tetramer specificity.
Fig. 3: Antigen tetramer enrichment in mice.
Fig. 4: Antigen tetramer enrichment in humans.
Fig. 5: Example of failed tetramer data.

Similar content being viewed by others

Data availability

All data are represented within the paper. Raw data files are available upon request. The corresponding authors have repositories of antigens used for antigen tetramer construction, which can be shared upon request. They are also willing to assist in construction of novel antigen tetramers, if contacted.

References

  1. Young, C. & Brink, R. The unique biology of germinal center B cells. Immunity 54, 1652–1664 (2021).

    CAS  PubMed  Google Scholar 

  2. Elsner, R. A. & Shlomchik, M. J. Germinal center and extrafollicular B cell responses in vaccination, immunity, and autoimmunity. Immunity 53, 1136–1150 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sharonov, G. V., Serebrovskaya, E. O., Yuzhakova, D. V., Britanova, O. V. & Chudakov, D. M. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat. Rev. Immunol. 20, 294–307 (2020).

    CAS  PubMed  Google Scholar 

  4. Cyster, J. G. & Allen, C. D. C. B cell responses: cell interaction dynamics and decisions. Cell 177, 524–540 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lu, L. L., Suscovich, T. J., Fortune, S. M. & Alter, G. Beyond binding: antibody effector functions in infectious diseases. Nat. Rev. Immunol. 18, 46–61 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. Tordesillas, L., Berin, M. C. & Sampson, H. A. Immunology of food allergy. Immunity 47, 32–50 (2017).

    CAS  PubMed  Google Scholar 

  7. Bousquet, J. et al. Allergic rhinitis. Nat. Rev. Dis. Prim. 6, 95 (2020).

    PubMed  Google Scholar 

  8. Weyand, C. M. & Goronzy, J. J. The immunology of rheumatoid arthritis. Nat. Immunol. 22, 10–18 (2020).

    PubMed  PubMed Central  Google Scholar 

  9. Koenig, J. F. et al. Memory generation and re-activation in food allergy. Immunotargets Ther. 10, 171–184 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Allman, D., Wilmore, J. R. & Gaudette, B. T. The continuing story of T-cell independent antibodies. Immunol. Rev. 288, 128–135 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Stavnezer, J., Guikema, J. E. J. & Schrader, C. E. Mechanism and regulation of class switch recombination. Annu. Rev. Immunol. 26, 261–292 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Pape, K. A., Taylor, J. J., Maul, R. W., Gearhart, P. J. & Jenkins, M. K. Different B cell populations mediate early and late memory during an endogenous immune response. Science 331, 1203–1207 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boonyaratanakornkit, J. & Taylor, J. J. Techniques to study antigen-specific B cell responses. Front. Immunol. 10, 1694 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Moody, M. A. & Haynes, B. F. Antigen-specific B cell detection reagents: use and quality control. Cytom. A 73, 1086–1092 (2008).

    Google Scholar 

  15. Kodituwakku, A. P., Jessup, C., Zola, H. & Roberton, D. M. Isolation of antigen-specific B cells. Immunol. Cell Biol. 81, 163–170 (2003).

    CAS  PubMed  Google Scholar 

  16. Franz, B., May, K. F., Dranoff, G. & Wucherpfennig, K. Ex vivo characterization and isolation of rare memory B cells with antigen tetramers. Blood 118, 348–357 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Taylor, J. J., Pape, K. A., Steach, H. R. & Jenkins, M. K. Apoptosis and antigen affinity limit effector cell differentiation of a single naive B cell. Science 347, 784–787 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Taylor, J. J., Pape, K. A. & Jenkins, M. K. A germinal center-independent pathway generates unswitched memory B cells early in the primary response. J. Exp. Med. 209, 597–606 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Taylor, J. J. et al. Deletion and anergy of polyclonal B cells specific for ubiquitous membrane-bound self-antigen. J. Exp. Med. 209, 2065–2077 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Boonyaratanakornkit, J. et al. Protective antibodies against human parainfluenza virus type 3 infection. MAbs 13, 1912884 (2021).

    PubMed  PubMed Central  Google Scholar 

  21. Koenig, J. F. E. et al. A distinct phenotype of polarized memory B cell holds IgE memory. Preprint at bioRxiv https://doi.org/10.1101/2023.01.25.525495 (2023).

  22. Steach, H. R. et al. Cross-reactivity with self-antigen tunes the functional potential of naive B cells specific for foreign antigens. J. Immunol. 204, 498–509 (2020).

    CAS  PubMed  Google Scholar 

  23. Aranda, C. J. et al. IgG memory B cells expressing IL4R and FCER2 are associated with atopic diseases. Allergy https://doi.org/10.1111/all.15601 (2022).

    Article  PubMed  Google Scholar 

  24. Bancroft, T. et al. Detection and activation of HIV broadly neutralizing antibody precursor B cells using anti-idiotypes. J. Exp. Med. 216, 2331–2347 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cabán, M. et al. Cross-protective antibodies against common endemic respiratory viruses. Nat. Commun. 14, 798 (2023).

    ADS  PubMed  PubMed Central  Google Scholar 

  26. Krishnamurty, A. T. et al. Somatically hypermutated plasmodium-specific IgM+ memory B cells are rapid, plastic, early responders upon malaria rechallenge. Immunity 45, 402–414 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Coelho, C. H. et al. A human monoclonal antibody blocks malaria transmission and defines a highly conserved neutralizing epitope on gametes. Nat. Commun. 12, 1750 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Taylor, J. J., Laudenbach, M., Tucker, A. M., Jenkins, M. K. & Pravetoni, M. Hapten-specific naïve B cells are biomarkers of vaccine efficacy against drugs of abuse. J. Immunol. Methods 405, 74–86 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rodda, L. B. et al. Functional SARS-CoV-2-specific immune memory persists after mild COVID-19. Cell 184, 169–183.e17 (2021).

    CAS  PubMed  Google Scholar 

  30. Pape, K. A. et al. High-affinity memory B cells induced by SARS-CoV-2 infection produce more plasmablasts and atypical memory B cells than those primed by mRNA vaccines. Cell Rep. 37, 109823 (2021).

    MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  31. Afkhami, S. et al. Respiratory mucosal delivery of next-generation COVID-19 vaccine provides robust protection against both ancestral and variant strains of SARS-CoV-2. Cell 185, 896–915.e19 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rodda, L. B. et al. Imprinted SARS-CoV-2-specific memory lymphocytes define hybrid immunity. Cell 185, 1588–1601.e14 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Saletti, G., Çuburu, N., Yang, J. S., Dey, A. & Czerkinsky, C. Enzyme-linked immunospot assays for direct ex vivo measurement of vaccine-induced human humoral immune responses in blood. Nat. Protoc. 8, 1073–1087 (2013).

    PubMed  Google Scholar 

  34. Czerkinsky, C. C., Nilsson, L. Å., Nygren, H., Ouchterlony, Ö. & Tarkowski, A. A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J. Immunol. Methods 65, 109–121 (1983).

    CAS  PubMed  Google Scholar 

  35. Blanchard-Rohner, G., Galli, G., Clutterbuck, E. A. & Pollard, A. J. Comparison of a limiting dilution assay and ELISpot for detection of memory B-cells before and after immunisation with a protein-polysaccharide conjugate vaccine in children. J. Immunol. Methods 358, 46–55 (2010).

    CAS  PubMed  Google Scholar 

  36. Townsend, S. E., Goodnow, C. C. & Cornall, R. J. Single epitope multiple staining to detect ultralow frequency B cells. J. Immunol. Methods 249, 137–146 (2001).

    CAS  PubMed  Google Scholar 

  37. Leyendeckers, H. et al. Frequent detection of thyroid peroxidase-specific IgG+ memory B cells in blood of patients with autoimmune thyroid disease. Eur. J. Immunol. 32, 3126–3132 (2002).

    CAS  PubMed  Google Scholar 

  38. Leyendeckers, H. et al. Correlation analysis between frequencies of circulating antigen-specific IgG-bearing memory B cells and serum titers of antigen-specific IgG. Eur. J. Immunol. 29, 1406–1417 (1999).

    CAS  PubMed  Google Scholar 

  39. Irsch, J. et al. Isolation and characterization of allergen-binding cells from normal and allergic donors. Immunotechnology 1, 115–125 (1995).

    CAS  PubMed  Google Scholar 

  40. Wennhold, K. et al. Using antigen-specific B cells to combine antibody and T cell-based cancer immunotherapy. Cancer Immunol. Res. 5, 730–743 (2017).

    CAS  PubMed  Google Scholar 

  41. Newman, J., Rice, J. S., Wang, C., Harris, S. L. & Diamond, B. Identification of an antigen-specific B cell population. J. Immunol. Methods 272, 177–187 (2003).

    CAS  PubMed  Google Scholar 

  42. Martin, F., Oliver, A. M. & Kearney, J. F. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity 14, 617–629 (2001).

    CAS  PubMed  Google Scholar 

  43. Leyendeckers, H. et al. Memory B cells specific for the NC16A domain of the 180 kDa bullous pemphigoid autoantigen can be detected in peripheral blood of bullous pemphigoid patients and induced in vitro to synthesize autoantibodies. J. Invest. Dermatol. 120, 372–378 (2003).

    CAS  PubMed  Google Scholar 

  44. Rahe, M. C., Gustafson, K. L. & Murtaugh, M. P. B cell tetramer development for veterinary vaccinology. Viral Immunol. 31, 1–10 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Fitzpatrick, K. S. et al. Validation of ligand tetramers for the detection of antigen-specific lymphocytes. J. Immunol. 210, 1156–1165 (2023).

    CAS  PubMed  Google Scholar 

  46. Wade-Vallance, A. K. & Allen, C. D. C. Intrinsic and extrinsic regulation of IgE B cell responses. Curr. Opin. Immunol. 72, 221–229 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Berendam, S. J. et al. Different adjuvanted pediatric HIV envelope vaccines induced distinct plasma antibody responses despite similar B cell receptor repertoires in infant rhesus macaques. PLoS ONE 16, e0256885 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Beckett, D., Kovaleva, E. & Schatz, P. J. A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci. 8, 921–929 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Spanier, J. A. et al. Efficient generation of monoclonal antibodies against peptide in the context of MHCII using magnetic enrichment. Nat. Commun. 7, 1–11 (2016).

    Google Scholar 

  50. Pape, K. A. et al. Naive B cells with high-avidity germline-encoded antigen receptors produce persistent IgM+ and transient IgG+ memory B cells. Immunity 48, 1135–1143.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang, Z., Sullivan, B. M. & Allen, C. D. C. Fluorescent in vivo detection reveals that IgE+ B cells are restrained by an intrinsic cell fate predisposition. Immunity 36, 857–872 (2012).

    CAS  PubMed  Google Scholar 

  52. Haniuda, K., Fukao, S., Kodama, T., Hasegawa, H. & Kitamura, D. Autonomous membrane IgE signaling prevents IgE-memory formation. Nat. Immunol. 17, 1109–1117 (2016).

    CAS  PubMed  Google Scholar 

  53. Jimenez-Saiz, R. et al. Human BCR analysis of single-sorted, putative IgE+ memory B cells in food allergy. J. Allergy Clin. Immunol. 144, 336–339.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang, Z. et al. Regulation of B cell fate by chronic activity of the IgE B cell receptor. eLife 5, 1–31 (2016).

    Google Scholar 

  55. Glass, D. R. et al. An integrated multi-omic single-cell atlas of human B cell identity. Immunity 53, 217–232.e5 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hill, S. W., Kipp, D. E., Melchers, I., Frelinger, J. A. & Sercarz, E. E. Multiple H-2 and non-H-2 genes controlling the anti-lysozyme response: alternative gene constellations can lead to responsiveness. Eur. J. Immunol. 10, 384–391 (1980).

    CAS  PubMed  Google Scholar 

  57. Haniuda, K. & Kitamura, D. Induced germinal center B cell culture system. Bio. Protoc. 9, e3163 (2019).

    PubMed  PubMed Central  Google Scholar 

  58. Tiller, T. et al. Efficient generation of monoclonal antibodies from single human B cells by single cell RT–PCR and expression vector cloning. J. Immunol. Methods 329, 112–124 (2008).

    CAS  PubMed  Google Scholar 

  59. Mason, D. Y., Jones, M. & Goodnow, C. C. Development and follicular localization of tolerant B lymphocytes in lysozyme/anti-lysozyme lgM/lgD transgenic mice. Int. Immunol. 4, 163–175 (1992).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. SoRelle (University of Texas Southwestern) for carefully reviewing and providing suggestions on the manuscript. We thank M. K. Jenkins (University of Minnesota) for supporting the initial development of these protocols and for the inclusion of Extended Data Fig. 1g. We thank J. Carter and D. Galloway (Fred Hutchinson Cancer Center) for providing supernatant containing GST. We thank the McMaster Flow Cytometry Core, H. Liang and M. Subapanditha for access to flow cytometers and experimental support. We thank M. S. Miller (McMaster University) and M. Larche (McMaster University) for providing recombinant RBD. The laboratories of M.J. and J.F.E.K. are funded by the Schroeder Foundation, Food Allergy Canada, ALK-Abello A/S, the Canadian Allergy Asthma and Immunology Foundation, the Zych family and the Satov family. A.P. is funded by an Ontario Graduate Scholarship and The Eva Eugenia Lillian Cope Scholarship. D.P.-C. was funded by Universidad Politécnica de Madrid and Banco Santander with predoctoral and travel Programa Propio grants. J.T.-A. was funded by Severo Ochoa Program (Production of Plant and Human health-relevant proteins in Super-Green Biofactories: PCD-UPM/7/2022). The Centre for Plant Biotechnology and Genomics was granted ‘Severo Ochoa’ Distinctions of Excellence by the Spanish Ministry of Science and Innovation (SEV-2016-0672 and CEX2020-000999-S). J.J.T. has been funded by the National Institutes of Health (R01AI122912, R01AI158728, R01AI167009), The Hartwell Foundation, Vir Biotechnology, Fred Hutch Cancer Center and generous donors. J.B. was supported by a Fast Grants award, and J.B. and J.J.T. were supported by a Fred Hutchinson Cancer Center COVID pilot award.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: A.P., D.P.-C., J.J.T. and J.F.E.K. Methodology: A.P., D.P.-C., J.J.T. and J.F.E.K. Formal analysis: A.P., D.P.-C., J.B., J.J.T. and J.F.E.K. Investigation: A.P., D.P.-C., F.U., E.G., O.M.-D., A.F., T.D.W., R.T.G., J.T.-A., A.D.-P., J.B. and J.F.E.K. Resources: J.T.-A., A.D.-P. and S.W. Visualization: A.P., D.P.-C., J.J.T. and J.F.E.K. Funding acquisition: J.T.-A., A.D.-P., S.W., M.J., J.J.T. and J.F.E.K. Supervision: J.J.T. and J.F.E.K. Writing — original draft: A.P., D.P.-C., J.J.T. and J.F.E.K. Writing — review and editing: A.P., D.P.-C., F.U., J.B., M.J., J.J.T. and J.F.E.K.

Corresponding authors

Correspondence to Justin J. Taylor or Joshua F. E. Koenig.

Ethics declarations

Competing interests

J.F.E.K. and M.J. receive funding from ALK Abello A/S. M.J. is an advisor for ALK Abello A/S. All other authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Michael Anthony Moody and Gabrielle Rizzuto for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Taylor, J. J. et al. J. Exp. Med. 209, 2065–2077 (2012): https://doi.org/10.1084/jem.20112272

Koenig, J. F. E. et al. Preprint at bioRxiv (2023): https://doi.org/10.1101/2023.01.25.525495

Taylor J. J. et al. Science 347, (2015): https://doi.org/10.1126/science.aaa1342

Cabán, M. et al. Nat. Commun. 14, 798 (2023): https://doi.org/10.1038/s41467-023-36459-3

Bancroft, T. et al. J. Exp. Med. 216, 2331–2347 (2019): https://doi.org/10.1084/jem.20190164

Extended data

Extended Data Fig. 1 Antigen monomer and tetramer staining.

a) Representative plot of OVA-FITC monomer-stained samples from the mesenteric lymph nodes of mice sensitized with 4 gavages of OVA/CT. b) Isotype of OVA-FITC monomer-binding B cells from unimmunized mice. c) Representative plot of OVA-PE tetramer-stained samples from the spleen and mesenteric lymph nodes of unimmunized and OVA/Alum immunized mice. d) Comparison of SA-PE and OVA PE tetramer staining in unimmunized mice. e) Representative plot of control and antigen tetramer staining of spleen and mesenteric lymph nodes from unimmunized mice. f) Isotype of OVA PE tetramer-binding B cells from unimmunized mice. g) Demonstration of exclusion of backbone-binding B cells using a control tetramer. Comparison of unimmunized mice, mice immunized intraperitoneally with OVA/CFA, PE/CFA, and SA/CFA. H) RBD PE and RBD APC tetramer staining of anti-PE, anti-APC, anti-SA, and anti-RBD loaded compensation beads.

Extended Data Fig. 2 Antigen-specific B cell tracing by adoptive transfer of tetramer enriched cells.

a) Schematic of the experiment. b) Representative plots and quantification of control and OVA tetramer staining of spleen and mesenteric lymph nodes of recipient µMT mice 9 days after OVA/Alum immunization. c) Quantification of serum OVA-specific IgE and IgG1 antibodies by ELISA. d–f) Evaluation of phenotype of OVA-specific B-lineage cells in the enriched fraction of OVA/Alum-immunized µMT recipients. * p<0.05 by two-way ANOVA. Error bars represent SEM. Panel a created with BioRender.com.

Extended Data Fig. 3 Examples of successful and failed blots to determine biotinylation ratio.

Sample blots of a) target biotinylation ratio, b) over-biotinylated antigen, c) under-biotinylated antigen.

Extended Data Fig. 4 Antigen tetramer enrichment from other tissues.

Evaluation of OVA tetramer binding in the unenriched, enriched and flow through fractions and evaluation of phenotype and isotype of OVA-specific B cells within the enriched fraction. a) OVA tetramer enrichment from unimmunized mice or mice sensitized with 4 gavages of OVA/CT. Small intestines from 5 mice were pooled prior to enrichment. b) OVA tetramer enrichment from unimmunized mice or mice immunized with an intraperitoneal injection of OVA/Alum. Bone marrow from the hind legs of one mouse is represented on each plot.

Extended Data Fig. 5 Example antigen tetramer reagents.

Enrichment of antigen tetramer-binding B cells from the spleen and mesenteric lymph nodes of unimmunized mice and those intraperitonally immunized with (a) Beta lactoglobulin (BLG), (b) Alt a 1, (c) Ara h 1, (d) SARS-CoV-2 spike RBD.

Extended Data Fig. 6 Additional information for Fig. 3.

a) Evaluation of phenotype of OVA-specific switched and IgE-expressing B cells from OVA/Alum immunized Verigem mice at 7 days post-immunization. b) Concatenated plot of intracellular IgE staining from 3 mice sensitized by 4 gavages of OVA/CT. Data was collected at day 6 after the last gavage. c) Extracellular IgG1 staining of OVA tetramer-binding B cells from unimmunized and OVA/Alum immunized mice. d) Intracellular IgG1 staining with and without blocking surface IgG1 with an unlabeled antibody.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Text and Methods.

Reporting Summary

Supplementary Software

Programmed Excel worksheet that performs calculations for this protocol.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phelps, A., Pazos-Castro, D., Urselli, F. et al. Production and use of antigen tetramers to study antigen-specific B cells. Nat Protoc 19, 727–751 (2024). https://doi.org/10.1038/s41596-023-00930-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00930-8

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing