Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Bacterial genome engineering using CRISPR-associated transposases

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR)-associated transposases have the potential to transform the technology landscape for kilobase-scale genome engineering, by virtue of their ability to integrate large genetic payloads with high accuracy, easy programmability and no requirement for homologous recombination machinery. These transposons encode efficient, CRISPR RNA-guided transposases that execute genomic insertions in Escherichia coli at efficiencies approaching ~100%. Moreover, they generate multiplexed edits when programmed with multiple guides, and function robustly in diverse Gram-negative bacterial species. Here we present a detailed protocol for engineering bacterial genomes using CRISPR-associated transposase (CAST) systems, including guidelines on the available vectors, customization of guide RNAs and DNA payloads, selection of common delivery methods, and genotypic analysis of integration events. We further describe a computational CRISPR RNA design algorithm to avoid potential off-targets, and a CRISPR array cloning pipeline for performing multiplexed DNA insertions. The method presented here allows the isolation of clonal strains containing a novel genomic integration event of interest within 1–2 weeks using available plasmid constructs and standard molecular biology techniques.

Key points

  • The protocol describes a novel and versatile CRISPR-associated transposase (CAST) system for the targeted and precise insertion of large DNA payloads into bacterial genomes.

  • Compared with pre-existing methods, this approach allows single and multiplexed insertion events at a desired location, with increased efficiency, reduced population heterogeneity, and improved specificity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of CASTs.
Fig. 2: Architecture of VchCAST vector constructs.
Fig. 3: Possible applications of CAST systems for microbial engineering.
Fig. 4: General CAST engineering workflow.
Fig. 5: PCR and qPCR analysis of integration products.
Fig. 6: Anticipated results from a CAST editing experiment.
Fig. 7: Alternative integration byproducts.
Fig. 8: Cloning CRISPR spacers for CAST systems.

Similar content being viewed by others

Data availability

Next-generation sequencing (NGS) data used for Figs. 6 and 7 are available in the National Center for Biotechnology Information (NCBI) Sequence Read Archive (BioProject accession code PRJNA668381). Published genomes used for Tn-seq analyses in Fig. 6 were obtained from the NCBI (accessions codes CP001509.3).

Code availability

The CAST guide RNA design tool and associated documentation are available online via GitHub (https://github.com/sternberglab/CAST-guide-RNA-tool). Custom Python scripts used for the described Tn-seq NGS data analyses used in Fig. 6 are available online via GitHub (https://github.com/sternberglab/Vo_etal_2020).

References

  1. Call, S. N. & Andrews, L. B. CRISPR-based approaches for gene regulation in non-model bacteria. Front. Genome Ed. 4, 892304 (2022).

    PubMed  PubMed Central  Google Scholar 

  2. Lu, L. et al. CRISPR-based metabolic engineering in non-model microorganisms. Curr. Opin. Biotechnol. 75, 102698 (2022).

    CAS  PubMed  Google Scholar 

  3. Ploessl, D., Zhao, Y. & Shao, Z. Engineering of non-model eukaryotes for bioenergy and biochemical production. Curr. Opin. Biotechnol. 79, 102869 (2023).

    CAS  PubMed  Google Scholar 

  4. Gudmunds, E., Wheat, C. W., Khila, A. & Husby, A. Functional genomic tools for emerging model species. Trends Ecol. Evol. 37, 1104–1115 (2022).

    CAS  PubMed  Google Scholar 

  5. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013).

    PubMed  PubMed Central  Google Scholar 

  8. Cho, S. W., Kim, S., Kim, J. M. & Kim, J.-S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230–232 (2013).

    CAS  PubMed  Google Scholar 

  9. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sander, J. D. & Joung, J. K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, H., La Russa, M. & Qi, L. S. CRISPR/Cas9 in genome editing and beyond. Annu. Rev. Biochem. 85, 227–264 (2016).

    CAS  PubMed  Google Scholar 

  12. Vento, J. M., Crook, N. & Beisel, C. L. Barriers to genome editing with CRISPR in bacteria. J. Ind. Microbiol. Biotechnol. 46, 1327–1341 (2019).

    CAS  PubMed  Google Scholar 

  13. Fels, U., Gevaert, K. & Van Damme, P. Bacterial genetic engineering by means of recombineering for reverse genetics. Front. Microbiol. 11, 548410 (2020).

    PubMed  PubMed Central  Google Scholar 

  14. Corts, A., Thomason, L. C., Costantino, N. & Court, D. L. Recombineering in non-model bacteria. Curr. Protoc. 2, e605 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pyne, M. E., Moo-Young, M., Chung, D. A. & Chou, C. P. Coupling the CRISPR/Cas9 system with Lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl. Environ. Microbiol. 81, 5103–5114 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reisch, C. R. & Prather, K. L. J. The no-SCAR (Scarless Cas9 Assisted Recombineering) system for genome editing in Escherichia coli. Sci. Rep. 5, 15096 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR–Cas systems. Nat. Biotechnol. 31, 233–239 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ikeda, K. et al. Efficient scarless genome editing in human pluripotent stem cells. Nat. Methods 15, 1045–1047 (2018).

    CAS  PubMed  Google Scholar 

  19. Elison, G. L. & Acar, M. Scarless genome editing: progress towards understanding genotype–phenotype relationships. Curr. Genet. 64, 1229–1238 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pines, G., Freed, E. F., Winkler, J. D. & Gill, R. T. Bacterial recombineering: genome engineering via phage-based homologous recombination. ACS Synth. Biol. 4, 1176–1185 (2015).

    CAS  PubMed  Google Scholar 

  21. Filsinger, G. T. et al. Characterizing the portability of phage-encoded homologous recombination proteins. Nat. Chem. Biol. 17, 394–402 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Krishnamurthy, M., Moore, R. T., Rajamani, S. & Panchal, R. G. Bacterial genome engineering and synthetic biology: combating pathogens. BMC Microbiol. 16, 258 (2016).

    PubMed  PubMed Central  Google Scholar 

  23. Charbonneau, M. R., Isabella, V. M., Li, N. & Kurtz, C. B. Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nat. Commun. 11, 1738 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fata Moradali, M. & Rehm, B. H. A. in Biopolymers for Biomedical and Biotechnological Applications https://doi.org/10.1002/9783527818310.ch3 (Wiley-Vch, 2021).

  25. McLoughlin, A. J. Plasmid stability and ecological competence in recombinant cultures. Biotechnol. Adv. 12, 279–324 (1994).

    CAS  PubMed  Google Scholar 

  26. Craig, N. L. Tn7: a target site-specific transposon. Mol. Microbiol. 5, 2569–2573 (1991).

    CAS  PubMed  Google Scholar 

  27. Shi, Q. et al. Conformational toggling controls target site choice for the heteromeric transposase element Tn7. Nucleic Acids Res. 43, 10734–10745 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Herrmann, S. et al. Site-specific recombination strategies for engineering actinomycete genomes. Appl. Environ. Microbiol. 78, 1804–1812 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. van Duyne, G. D. in Mobile DNA III https://doi.org/10.1128/9781555819217.ch5 (ASM Press, 2015).

  30. Cain, A. K. et al. A decade of advances in transposon-insertion sequencing. Nat. Rev. Genet. 21, 526–540 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. van Opijnen, T., Bodi, K. L. & Camilli, A. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat. Methods 6, 767–772 (2009).

    PubMed  PubMed Central  Google Scholar 

  32. Vo, P. L. H. et al. CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-00745-y (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Klompe, S. E., Vo, P. L. H., Halpin-Healy, T. S. & Sternberg, S. H. Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration. Nature 571, 219–225 (2019).

    CAS  PubMed  Google Scholar 

  34. Peters, J. E., Makarova, K. S., Shmakov, S. & Koonin, E. V. Recruitment of CRISPR–Cas systems by Tn7-like transposons. Proc. Natl Acad. Sci. USA 114, E7358–E7366 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, Y. et al. Programming cells by multicopy chromosomal integration using CRISPR-associated transposases. Cris. J. 4, 350–359 (2021).

    CAS  Google Scholar 

  36. Chen, W. et al. Targeted genetic screening in bacteria with a Cas12k-guided transposase. Cell Rep. 36, 109635 (2021).

    CAS  PubMed  Google Scholar 

  37. Rubin, B. E. et al. Species- and site-specific genome editing in complex bacterial communities. Nat. Microbiol. 7, 34–47 (2022).

    CAS  PubMed  Google Scholar 

  38. Yang, S. et al. Orthogonal CRISPR-associated transposases for parallel and multiplexed chromosomal integration. Nucleic Acids Res. 49, 10192–10202 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Saito, M. et al. Dual modes of CRISPR-associated transposon homing. Cell 184, 2441–2453.e18 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Halpin-Healy, T. S., Klompe, S. E., Sternberg, S. H. & Fernández, I. S. Structural basis of DNA targeting by a transposon-encoded CRISPR–Cas system. Nature 577, 271–274 (2020).

    ADS  CAS  PubMed  Google Scholar 

  41. Klompe, S. E. et al. Evolutionary and mechanistic diversity of Type I-F CRISPR-associated transposons. Mol. Cell 82, 616–628.e5 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Strecker, J. et al. RNA-guided DNA insertion with CRISPR-associated transposases. Science 365, 48–53 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rybarski, J. R., Hu, K., Hill, A. M., Wilke, C. O. & Finkelstein, I. J. Metagenomic discovery of CRISPR-associated transposons. Proc. Natl Acad. Sci. USA 118, e2112279118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hsieh, S.-C. & Peters, J. E. Discovery and characterization of novel Type I-D CRISPR-guided transposons identified among diverse Tn7-like elements in cyanobacteria. Nucleic Acids Res. 51, 765–782 (2023).

    CAS  PubMed  Google Scholar 

  45. Tou, C. J., Orr, B. & Kleinstiver, B. P. Precise cut-and-paste DNA insertion using engineered Type V-K CRISPR-associated transposases. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01574-x (2023).

    Article  PubMed  Google Scholar 

  46. Vo, P. L. H., Acree, C., Smith, M. L. & Sternberg, S. H. Unbiased profiling of CRISPR RNA-guided transposition products by long-read sequencing. Mob. DNA 12, 13 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. George, J. T. et al. Mechanism of target site selection by type V-K CRISPR-associated transposases. Science 382, eadj8543 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Schmitz, M., Querques, I., Oberli, S., Chanez, C. & Jinek, M. Structural basis for the assembly of the Type V CRISPR-associated transposon complex. Cell 185, 4999–5010.e17 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Park, J.-U. et al. Structural basis for target site selection in RNA-guided DNA transposition systems. Science 373, 768–774 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Peters, J. E. in Mobile DNA III https://doi.org/10.1128/9781555819217.ch30 (ASM Press, 2015).

  51. Hoffmann, F. T. et al. Selective TnsC recruitment enhances the fidelity of RNA-guided transposition. Nature 609, 384–393 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Skelding, Z., Queen-Baker, J. & Craig, N. L. Alternative interactions between the Tn7 transposase and the Tn7 target DNA binding protein regulate target immunity and transposition. EMBO J. 22, 5904–5917 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Arciszewska, L. K., Drake, D. & Craig, N. L. Transposon Tn7: cis-acting sequences in transposition and transposition immunity. J. Mol. Biol. 207, 35–52 (1989).

    CAS  PubMed  Google Scholar 

  54. Choi, K. Y., Spencer, J. M. & Craig, N. L. The Tn7 transposition regulator TnsC interacts with the transposase subunit TnsB and target selector TnsD. Proc. Natl Acad. Sci. USA 111, E2858–E2865 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang, J. et al. CRISPR-associated transposase system can insert multiple copies of donor DNA into the same target locus. Cris. J. 4, 789–798 (2021).

    CAS  Google Scholar 

  56. Rice, P. A., Craig, N. L. & Dyda, F. Comment on ‘RNA-guided DNA insertion with CRISPR-associated transposases’. Science 368, eabb2022 (2020).

    CAS  PubMed  Google Scholar 

  57. Strecker, J., Ladha, A., Makarova, K. S., Koonin, E. V. & Zhang, F. Response to comment on ‘RNA-guided DNA insertion with CRISPR-associated transposases’. Science 368, eabb2920 (2020).

    CAS  PubMed  Google Scholar 

  58. Tansirichaiya, S., Rahman, M. A. & Roberts, A. P. The transposon registry. Mob. DNA 10, 40 (2019).

    PubMed  PubMed Central  Google Scholar 

  59. Zhang, Y. et al. Multicopy chromosomal integration using CRISPR-associated transposases. ACS Synth. Biol. 9, 1998–2008 (2020).

    CAS  PubMed  Google Scholar 

  60. Petassi, M. T., Hsieh, S.-C. & Peters, J. E. Guide RNA categorization enables target site choice in Tn7–CRISPR–cas transposons. Cell 183, 1757–1771.e18 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Aziz, R. K., Breitbart, M. & Edwards, R. A. Transposases are the most abundant, most ubiquitous genes in nature. Nucleic Acids Res. 38, 4207–4217 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bean, E. L., Herman, C., Anderson, M. E. & Grossman, A. D. Biology and engineering of integrative and conjugative elements: construction and analyses of hybrid ICEs reveal element functions that affect species-specific efficiencies. PLoS Genet. 18, e1009998 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. McKenzie, G. J. & Craig, N. L. Fast, easy and efficient: site-specific insertion of transgenes into Enterobacterial chromosomes using Tn7 without need for selection of the insertion event. BMC Microbiol. 6, 39 (2006).

    PubMed  PubMed Central  Google Scholar 

  64. Hartl, D. L. Discovery of the transposable element mariner. Genetics 157, 471–476 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lampe, D. J., Akerley, B. J., Rubin, E. J., Mekalanos, J. J. & Robertson, H. M. Hyperactive transposase mutants of the Himar1 mariner transposon. Proc. Natl Acad. Sci. USA 96, 11428–11433 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Muñoz-López, M. & García-Pérez, J. L. DNA transposons: nature and applications in genomics. Curr. Genomics 11, 115–128 (2010).

    PubMed  PubMed Central  Google Scholar 

  67. Goryshin, I. Y., Miller, J. A., Kil, Y. V., Lanzov, V. A. & Reznikoff, W. S. Tn5/IS50 target recognition. Proc. Natl Acad. Sci. USA 95, 10716–10721 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Veeranagouda, Y., Husain, F. & Wexler, H. M. Transposon mutagenesis of Bacteroides fragilis using a Mariner transposon vector. Anaerobe 22, 126–129 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Perry, B. J. & Yost, C. K. Construction of a Mariner-based transposon vector for use in insertion sequence mutagenesis in selected members of the Rhizobiaceae. BMC Microbiol. 14, 298 (2014).

    PubMed  PubMed Central  Google Scholar 

  70. Akerley, B. J. et al. Systematic identification of essential genes by in vitro Mariner mutagenesis. Proc. Natl Acad. Sci. USA 95, 8927–8932 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, H. H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, H. H. et al. Genome-scale promoter engineering by coselection MAGE. Nat. Methods 9, 591–593 (2012).

    PubMed  PubMed Central  Google Scholar 

  73. Leibig, M. et al. Marker removal in staphylococci via Cre recombinase and different lox sites. Appl. Environ. Microbiol. 74, 1316–1323 (2008).

    ADS  CAS  PubMed  Google Scholar 

  74. Fedoryshyn, M., Petzke, L., Welle, E., Bechthold, A. & Luzhetskyy, A. Marker removal from actinomycetes genome using Flp recombinase. Gene 419, 43–47 (2008).

    CAS  PubMed  Google Scholar 

  75. Jensen, S. I. & Nielsen, A. T. Multiplex genome editing in Escherichia coli. Methods Mol. Biol. https://doi.org/10.1007/978-1-4939-7295-1_8 (2018).

  76. Walker, M. W. G., Klompe, S. E., Zhang, D. J. & Sternberg, S. H. Transposon mutagenesis libraries reveal novel molecular requirements during CRISPR RNA-guided DNA integration. Nucleic Acids Res. 51, 4519–4535 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Stellwagen, A. E. & Craig, N. L. Avoiding self: two Tn7-encoded proteins mediate target immunity in Tn7 transposition. EMBO J. 16, 6823–6834 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).

    PubMed  PubMed Central  Google Scholar 

  79. Lampe, G. D. et al. Targeted DNA integration in human cells without double-strand breaks using CRISPR-associated transposases. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01748-1 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Roberts, A., Nethery, M. A. & Barrangou, R. Functional characterization of diverse type I-F CRISPR-associated transposons. Nucleic Acids Res. 50, 11670–11681 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Antoine, R. & Locht, C. Isolation and molecular characterization of a novel broad-host-range plasmid from Bordetella bronchiseptica with sequence similarities to plasmids from Gram-positive organisms. Mol. Microbiol. 6, 1785–1799 (1992).

    CAS  PubMed  Google Scholar 

  82. Lauritsen, I., Kim, S. H., Porse, A. & Nørholm, M. H. H. Standardized cloning and curing of plasmids. Methods Mol. Biol. https://doi.org/10.1007/978-1-4939-7795-6_28 (2018).

  83. Ronda, C., Chen, S. P., Cabral, V., Yaung, S. J. & Wang, H. H. Metagenomic engineering of the mammalian gut microbiome in situ. Nat. Methods 16, 167–170 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Llosa, M. & de la Cruz, F. Bacterial conjugation: a potential tool for genomic engineering. Res. Microbiol. 156, 1–6 (2005).

    CAS  PubMed  Google Scholar 

  85. Strand, T. A., Lale, R., Degnes, K. F., Lando, M. & Valla, S. A new and improved host-independent plasmid system for RK2-based conjugal transfer. PLoS One 9, e90372 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Pesari for laboratory support, J. Mohabir and S. Acree for assistance with NGS read alignment, and the JP Sulzberger Columbia Genome Center for NGS support. H.H.W. acknowledges funding support from the National Science Foundation (MCB-2025515), National Institutes of Health (1R01EB031935, 2R01AI132403, 1R01DK118044 and 1R21AI146817), Burroughs Wellcome Fund (1016691) and Department of Defense Army Research Office (W911NF-22-2-0210). D.R.G. is supported by the Burroughs Wellcome Fund Postdoctoral Diversity Enrichment Program. S.H.S. acknowledges funding support from the National Institutes of Health (DP2HG011650, R21AI168976, R01EB031935, and R01EB027793), the Pew Biomedical Scholars Program, the Alfred Sloan Foundation Research Fellowship, the Irma T. Hirschl Career Scientist Award, and a generous startup package from the Columbia University Irving Medical Center Dean’s Office and the Vagelos Precision Medicine Fund.

Author information

Authors and Affiliations

Authors

Contributions

D.R.G., P.L.H.V. and S.H.S. wrote the manuscript. D.R.G., P.L.H.V. and S.E.K. designed the figures, and C.R. and H.H.W. discussed figure ideas, provided information on conjugations, and provided feedback on the manuscript.

Corresponding author

Correspondence to Samuel H. Sternberg.

Ethics declarations

Competing interests

Columbia University has filed patent applications related to this work. S.H.S. is a cofounder and scientific advisor to Dahlia Biosciences, a scientific advisor to CrisprBits and Prime Medicine, and an equity holder in Dahlia Biosciences and CrisprBits. H.H.W. is a scientific advisor of SNIPR Biome, Kingdom Supercultures, Fitbiomics, Arranta Bio, VecX Biomedicines and Genus PLC, and a scientific cofounder of Aclid, none of whom are involved in the study. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Sheng Yang and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Vo, P. L. H. et al. Nat. Biotechnol. 39, 480–489 (2021): https://doi.org/10.1038/s41587-020-00745-y

Hoffmann, F. T. et al. Nature 609, 384–393 (2022): https://doi.org/10.1038/s41586-022-05059-4

Walker, M. W. G. et al. Nucleic Acids Res. 51, 4519–4535 (2023): https://doi.org/10.1093/nar/gkad270

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gelsinger, D.R., Vo, P.L.H., Klompe, S.E. et al. Bacterial genome engineering using CRISPR-associated transposases. Nat Protoc 19, 752–790 (2024). https://doi.org/10.1038/s41596-023-00927-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00927-3

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing