Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A platform for whole-genome speed introgression from Aegilops tauschii to wheat for breeding future crops

Abstract

Breeding new and sustainable crop cultivars of high yields and desirable traits has been a major challenge for ensuring food security for the growing global human population. For polyploid crops such as wheat, introducing genetic variation from wild relatives of its subgenomes is a key strategy to improve the quality of their breeding pools. Over the past decades, considerable progress has been made in speed breeding, genome sequencing, high-throughput phenotyping and genomics-assisted breeding, which now allows us to realize whole-genome introgression from wild relatives to modern crops. Here, we present a standardized protocol to rapidly introgress the entire genome of Aegilops tauschii, the progenitor of the D subgenome of bread wheat, into elite wheat backgrounds. This protocol integrates multiple modern high-throughput technologies and includes three major phases: development of synthetic octaploid wheat, generation of hexaploid A. tauschii–wheat introgression lines (A-WIs) and homozygosis of the generated A-WIs. Our approach readily generates stable introgression lines in 2 y, thus greatly accelerating the generation of A-WIs and the introduction of desirable genes from A. tauschii to wheat cultivars. These A-WIs are valuable for wheat-breeding programs and functional gene discovery. The current protocol can be easily modified and used for introgressing the genomes of wild relatives to other polyploid crops.

Key points

  • This protocol describes a method to introgress the entire genome of the wild Aegilops tauschii into elite bread wheat with the aim of introducing genetic variation and desirable traits.

  • This protocol allows more efficient introgression than existing methods by using a rapid, high-throughput introgression platform.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of how to reconstruct the wheat D subgenome by using the RHI approach.
Fig. 2: Overview of the advanced A-WI development platform.
Fig. 3: Anticipated chromosome-level transition during the development of primary A-WIs.
Fig. 4: Anticipated introgressions from A. tauschii to bread wheat by 55K SNP array and exome sequencing from the BC1 to BC4 generations.
Fig. 5: An anticipated model of introgressing the whole genome of A. tauschii into bread wheat on the basis of the minimum population.
Fig. 6: Comparison of generation times for RHI in a greenhouse condition and conventional breeding introgression in a field condition.
Fig. 7: Examples of A-WIs with favorable traits.

Similar content being viewed by others

Data availability

All raw data of exome sequencing of AW-I and parent lines have been deposited in the National Center for Biotechnology Information under BioProject number PRJNA961342. Original 55K SNP array genotype data in derived C1, BC1F1, BC2F1 and BC3F1 generations of A. tauschii T093 and bread wheat AK58 are available in the Supplementary Data.

Code availability

A code resource used in the project has been deposited in GitHub (https://github.com/haoli01/Introgress-analysis).

References

  1. Nelson, G. C. et al. Climate change: impact on agriculture and costs of adaptation. Climate Change: Impact on Agriculture and Costs of Adaptation Vol. 21 (International Food Policy Research Institute, 2009).

  2. Wang, J. et al. Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. N. Phytol. 198, 925–937 (2013).

    Article  CAS  Google Scholar 

  3. Zhou, Y. et al. Introgressing the Aegilops tauschii genome into wheat as a basis for cereal improvement. Nat. Plants 7, 774–786 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Gaurav, K. et al. Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nat. Biotechnol. 40, 422–431 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Kihara, H. Discovery of the DD-analyser, one of the ancestors of vulgare wheats. Agric. Hortic. 19, 889–890 (1944).

    Google Scholar 

  6. Mcfadden, E. S. & Sears, E. R. The origin of Triticum spelta and its free-threshing hexaploid relatives. J. Hered. 37, 81–89 (1946).

    Article  PubMed  Google Scholar 

  7. Tanksley, S. D. & McCouch, S. R. Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277, 1063–1066 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Xiao, J. et al. Wheat genomic study for genetic improvement of traits in China. Sci. China Life Sci. 65, 1718–1775 (2022).

    Article  MathSciNet  PubMed  Google Scholar 

  9. Pont, C. et al. Tracing the ancestry of modern bread wheats. Nat. Genet. 51, 905–911 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Bohra, A. et al. Reap the crop wild relatives for breeding future crops. Trends Biotechnol. 40, 412–431 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Kashyap, A. et al. Strategies for utilization of crop wild relatives in plant breeding programs. Theor. Appl. Genet. 135, 4151–4167 (2022).

    Article  PubMed  Google Scholar 

  12. Balakrishnan, D., Surapaneni, M., Mesapogu, S. & Neelamraju, S. Development and use of chromosome segment substitution lines as a genetic resource for crop improvement. Theor. Appl. Genet. 132, 1–25 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Kishii, M. An update of recent use of Aegilops species in wheat breeding. Front. Plant Sci. 10, 585 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cox, T. S. et al. Comparing two approaches for introgression of germplasm from Aegilops tauschii into common wheat. Crop J. 5, 355–362 (2017).

    Article  Google Scholar 

  15. Matsuoka, Y. & Nasuda, S. Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F1 hybrid with Aegilops tauschii Coss. Theor. Appl. Genet. 109, 1710–1717 (2004).

    Article  PubMed  Google Scholar 

  16. Matsuoka, Y., Takumi, S. & Kawahara, T. Natural variation for fertile triploid F1 hybrid formation in allohexaploid wheat speciation. Theor. Appl. Genet. 115, 509–518 (2007).

    Article  PubMed  Google Scholar 

  17. Li, A., Liu, D., Yang, W., Kishii, M. & Mao, L. Synthetic hexaploid wheat: yesterday, today, and tomorrow. Engineering 4, 552–558 (2018).

    Article  CAS  Google Scholar 

  18. Das, M. K., Bai, G., Mujeeb-Kazi, A. & Rajaram, S. Genetic diversity among synthetic hexaploid wheat accessions (Triticum aestivum) with resistance to several fungal diseases. Genet. Resour. Crop Evol. 63, 1285–1296 (2016).

    Article  CAS  Google Scholar 

  19. Hao, M. et al. The resurgence of introgression breeding, as exemplified in wheat improvement. Front. Plant Sci. 11, 252 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hao, M. et al. A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat. Theor. Appl. Genet. 132, 2285–2294 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Mujeeb-Kazi, A. et al. Rebirth of synthetic hexaploids with global implications for wheat improvement. Aust. J. Agric. Res. 59, 391–398 (2008).

    Article  Google Scholar 

  22. Mujeeb-Kazi, A. et al. Genetic diversity for wheat improvement as a conduit to food security. Adv. Agron. 122, 179–257 (2013).

    Article  CAS  Google Scholar 

  23. Zhang, L. Q. et al. Frequent occurrence of unreduced gametes in Triticum turgidum-Aegilops tauschii hybrids. Euphytica 172, 285–294 (2010).

    Article  Google Scholar 

  24. Li, H. et al. Chromosomal structural changes and microsatellite variations in newly synthesized hexaploid wheat mediated by unreduced gametes. J. Genet. 95, 819–830 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, H. et al. Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. Proc. Natl Acad. Sci. USA 110, 3447–3452 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Gill, B. S. & Raupp, W. J. Direct genetic transfers from Aegilops squarrosa L. to hexaploid wheat. Crop Sci. 27, 445–450 (1987).

    Article  Google Scholar 

  27. Zhang, D. et al. Development and utilization of introgression lines using synthetic octaploid wheat (Aegilops tauschii × hexaploid wheat) as donor. Front. Plant Sci. 9, 1113 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  28. Zhang, Y. et al. Studies on overcoming the cross compatibility of Aegilops squarrosa x Triticum aestivum. Acta Agronomica Sinica 8, 137-140(1982) (in Chinese with English abstract).

  29. Zhang, D. et al. An advanced backcross population through synthetic octaploid wheat as a “Bridge”: development and QTL detection for seed dormancy. Front. Plant Sci. 8, 2123 (2017).

    Article  Google Scholar 

  30. Ma, F. et al. Introgression of QTL from Aegilops tauschii enhances yield-related traits in common wheat. Crop J. 11, 1521–1532 (2023).

    Article  Google Scholar 

  31. Luo, M. C. et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551, 498–502 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Zhao, G. et al. The Aegilops tauschii genome reveals multiple impacts of transposons. Nat. Plants 3, 946–955 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Jia, J. et al. Homology-mediated inter-chromosomal interactions in hexaploid wheat lead to specific subgenome territories following polyploidization and introgression. Genome Biol. 22, 26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Watson, A. et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants 4, 23–29 (2018).

    Article  PubMed  ADS  Google Scholar 

  35. Ghosh, S. et al. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat. Protoc. 13, 2944–2963 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, Y., Wu, Y., Zhang, C. & Wang, Y. Effects of Aegilops squarrosa cytoplasm on the characters of common wheat [in Chinese]. Sci. Agric. Sin. 4, 56–61 (1985).

    Google Scholar 

  37. Li, S. et al. Embryo rescue and embryo-callus-regenerated plants of an Aegilops tauschii x Triticum aestivum hybrid. Acta Bot. Boreal. Occident. Sin. 13, 134–139 (1993). in Chinese with English abstract.

    ADS  Google Scholar 

  38. Guzzon, F., Gianella, M., Giovannini, P. & Payne, T. S. Conserving wheat genetic resources. in Wheat Improvement: Food Security in a Changing Climate (eds Reynolds, M. P. & Braun, H.-J.) 299–318 (Springer, 2022).

  39. Fernie, A. R. & Yan, J. De novo domestication: an alternative route toward new crops for the future. Mol. Plant 12, 615–631 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Gao, C. Genome engineering for crop improvement and future agriculture. Cell 184, 1621–1635 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Huang, X., Huang, S., Han, B. & Li, J. The integrated genomics of crop domestication and breeding. Cell 185, 2828–2839 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. McMullen, M. D. et al. Genetic properties of the maize nested association mapping population. Science 325, 737–740 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Nice, L. M. et al. Development and genetic characterization of an advanced backcross-nested association mapping (AB-NAM) population of wild × cultivated barley. Genetics 203, 1453–1467 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cha, J. K. et al. Speed vernalization to accelerate generation advance in winter cereal crops. Mol. Plant 15, 1300–1309 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, H. et al. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 368, eaba5435 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Coombes, B. et al. Whole-genome sequencing uncovers the structural and transcriptomic landscape of hexaploid wheat/Ambylopyrum muticum introgression lines. Plant Biotechnol. J. 21, 482–496 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Koo, D. H., Friebe, B. & Gill, B. S. Homoeologous recombination: a novel and efficient system for broadening the genetic variability in wheat. Agronomy 10, 1059 (2020).

    Article  CAS  Google Scholar 

  48. Li, H. et al. Recombination between homoeologous chromosomes induced in durum wheat by the Aegilops speltoides Su1-Ph1 suppressor. Theor. Appl. Genet. 132, 3265–3276 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Serra, H. et al. Ph2 encodes the mismatch repair protein MSH7-3D that inhibits wheat homoeologous recombination. Nat. Commun. 12, 803 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  50. Rey, M. D. et al. Exploiting the ZIP4 homologue within the wheat Ph1 locus has identified two lines exhibiting homoeologous crossover in wheat-wild relative hybrids. Mol. Breed. 37, 95 (2017).

    Article  PubMed  Google Scholar 

  51. King, J. et al. Development of stable homozygous wheat/Amblyopyrum muticum (Aegilops mutica) introgression lines and their cytogenetic and molecular characterization. Front. Plant Sci. 10, 34 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  52. Kato, A. Air drying method using nitrous oxide for chromosome counting in maize. Biotech. Histochem. 74, 160–166 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Kato, A. et al. Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech. Histochem. 81, 71–78 (2006).

    Article  PubMed  Google Scholar 

  54. Du, P. et al. Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes. Genome 60, 93–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Tang, Z., Yang, Z. & Fu, S. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J. Appl. Genet. 55, 313–318 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Yang, W. et al. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat. Commun. 5, 5087 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  57. Xiong, H. et al. A large‐scale whole‐exome sequencing mutant resource for functional genomics in wheat. Plant Biotechnol. J. 21, 2047–2056 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Jan Dvorak (UC Davis, USA) and Le Wang (Jilin University, China) for help with the manuscript. This work was supported by grants from the National Natural Science Foundation of China (32230079), the National Key Research and Development Program of China (2022YFF1001600) and the Natural Science Foundation of Henan Province (222301420102).

Author information

Authors and Affiliations

Authors

Contributions

C.-P.S., Y. Zhou and H. Li provided conceptualization. H. Li, L.Z., R.F., Z.L., Y. Liu, A.S., Can Li, F.N. and X.L. provided methodology. The investigation was performed by H. Li, L.Z., R.F., Z.L., Y. Liu, A.S., Can Li, F.N., X.L., Y.Y., T.G., Y. Zhu, M.B., Y. Li, W.L., Chenglin Li, H. Liang, S.B., F.M., G.G. and Z.Z. The original draft was prepared by H. Li, L.Z. and Y. Zhou. The draft was reviewed and edited by C.-P.S., H. Li, Y. Zhou and J.H. Funding was acquired by C.-P.S., Y. Zhou and H. Li. Resources and supervision were provided by C.-P.S., Y. Zhou and H. Li.

Corresponding authors

Correspondence to Yun Zhou or Chun-Peng Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Zhongfu Ni, Nils Stein, Awais Rasheed and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Zhou, Y. et al. Nat. Plants 7, 774–786 (2021): https://doi.org/10.1038/s41477-021-00934-w

Ma, F. et al. Crop J. 11, 1521–1532 (2023): https://doi.org/10.1016/j.cj.2023.05.001

Extended data

Extended Data Fig. 1 An SOW pool developed by crossing 85 A. tauschii accessions from all five sublineages with bread wheat cultivar.

a, Sublineage information of 85 A. tauschii accessions. The accession number of each sublineage is indicated in parentheses. b, Spike and grain phenotype of 18 SOWs and parent lines. AK58 and T093 represent wheat cultivar and A. tauschii, respectively. c, ND-FISH karyotypes of 12 SOWs. Most of the SOWs carried a complete chromosome set of A. tauschii, while several SOWs occasionally lose chromosomes. Green: oligo-pSc119.2; red: oligo-pTa535; yellow: oligo-(GAA)10. Adapted with permission from ref. 3, Springer Nature Limited.

Extended Data Fig. 2 Meiotic pairing of A. tauschii T093 × common wheat AK58 F1 hybrids.

ac, The averaged univalent (I) and bivalent (II) number in each meiotic cell of A. tauschii T093 (n = 85 cells), common wheat AK58 (n = 50 cells) and their F1 hybrids (n = 72 cells). d, A meiotic cell of A. tauschii T093 × common wheat AK58 F1 hybrids showing seven bivalents and 14 univalents. Arrows represent the bivalents of 1D with 1Dt, and 2D with 2Dt, respectively. Green: oligo-(GAA)10; red: oligo- pTa535-1. Bar = 20 μm. ANPC, average number per cell.

Extended Data Fig. 3 Graphical representation of the whole-genome coverage in BC1F1, BC2F1 and BC3F1 in seven homologous groups based on a 55K SNP array.

ac, Whole-genome coverage in BC1F1 (a), BC2F1 (b) and BC3F1 (c) by using original population size. df, Whole-genome coverage in BC1F1 (d), BC2F1 (e) and BC3F1 (f) by using calculated saturation population size. Each row represents an A-WI, and each column represents a SNP locus. Pink: heterozygous for A. tauschii T093 alleles; blue: homozygous for bread wheat AK58 alleles; white: missing data. 0: genotype consistent with bread wheat cultivar AK58; 1: missing data; 2: genotype consistent with A. tauschii T093.

Extended Data Fig. 4 Distribution of introgressed fragment size in different generations.

a and b, Histogram of a foreign fragment size of BC4F1 (a) and BC4F2 (b) in seven homologous groups with 10 Mb as the length interval. c and d, count of introgressed fragments with length <10 Mb. The width of each column represents a span of 1 Mb. chr, chromosome.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2 and Table 2

Reporting Summary

Supplementary Video 1

A video file showing how to emasculate the spikes of A. tauschii

Supplementary Table 1

The inheritance frequencies of A. tauschii T093 alleles evaluated by 55K SNP array in derived BC1F1, BC2F1 and BC3F1 generations

Supplementary Table 3

Statistics of introgressed fragment sizes in derived BC4F1, BC4F2 and BC4F4 generations

Supplementary Data 1

Supplementary Data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhu, L., Fan, R. et al. A platform for whole-genome speed introgression from Aegilops tauschii to wheat for breeding future crops. Nat Protoc 19, 281–312 (2024). https://doi.org/10.1038/s41596-023-00922-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00922-8

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing