Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Biomimetic tail-to-head terpene cyclizations using the resorcin[4]arene capsule catalyst

Abstract

The tail-to-head terpene (THT) cyclization is a biochemical process that gives rise to many terpene natural product skeletons encountered in nature. Historically, it has been difficult to achieve THT synthetically without using an enzyme. In this protocol, a hexameric resorcin[4]arene capsule acts as an artificial enzyme mimic to carry out biomimetic THT cyclizations and related carbocationic rearrangements. The precursor molecule bears a leaving group (usually an alcohol or acetate group) and undergoes the THT reaction in the presence of the capsule catalyst and HCl as a cocatalyst. Careful control of several parameters (including water content, amount of HCl cocatalyst, temperature and solvent) is crucial to successfully carrying out the reaction. To facilitate the application of this unique capsule-catalysis methodology, we therefore developed a very detailed procedure that includes the preparation and analysis of all reaction components. In this protocol, we describe how to prepare two different terpenes: isolongifolene and presilphiperfolan-1β-ol. The two procedures differ in the water content required for efficient product formation, and thus exemplify the two common use cases of this methodology. The influence of other crucial reaction parameters and means of precisely controlling them are described. A commercially available substrate, nerol, can be used as simple test substrate to validate the reaction setup. Each synthetic procedure requires 5–7 d, including 1–5 h of hands-on time. The protocol applies to the synthesis of many complex terpene natural products that would otherwise be difficult to access in synthetically useful yields.

Key points

  • The tail-to-head terpene cyclization converts simple precursors into a wide variety of terpene structures. The enzymes used in nature are precursor specific, making it difficult to access modified terpenes.

  • A hexameric resorcin[4]arene capsule can catalyze tail-to-head terpene cyclizations for a wide variety of precursors if reaction conditions (e.g., water content and catalytic HCl concentration) are carefully optimized and controlled.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: THT cyclizations.
Fig. 2: Nerol cyclization.
Fig. 3: Reaction progress for isolongifolene synthesis.
Fig. 4: Chromatogram of isolongifolene synthesis.
Fig. 5: Chromatogram of isolongifolene oxidation to isolongifolenone.
Fig. 6: Chromatograms of presilphiperfolan-1β-ol synthesis.
Fig. 7: Reaction progress for presilphiperfolan-1β-ol synthesis.

Similar content being viewed by others

Data availability

Relevant data for this protocol can be found in the text and Supplementary Information of this paper and/or its supporting primary research papers. Raw data for the figures have been deposited at https://zenodo.org/records/10052551.

References

  1. Christianson, D. W. Structural and chemical biology of terpenoid cyclases. Chem. Rev. 117, 11570–11648 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  2. Miller, D. J. & Allemann, R. K. Sesquiterpene synthases: passive catalysts or active players? Nat. Prod. Rep. 29, 60–71 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Pronin, S. V. & Shenvi, R. A. Synthesis of highly strained terpenes by non-stop tail-to-head polycyclization. Nat. Chem. 4, 915–920 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Lesburg, C. A., Zhai, G., Cane, D. E. & Christianson, D. W. Crystal structure of pentalenene synthase: mechanistic insights on terpenoid cyclization reactions in biology. Science 277, 1820 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Starks, C. M., Back, K., Chappell, J. & Noel, J. P. Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 277, 1815 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Guerra-Bubb, J., Croteau, R. & Williams, R. M. The early stages of taxol biosynthesis: an interim report on the synthesis and identification of early pathway metabolites. Nat. Prod. Rep. 29, 683–696 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Paddon, C. J. et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496, 528–532 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Gutsche, C. D., Maycock, J. R. & Chang, C. T. Acid-catalyzed cyclization of farnesol and nerolidol. Tetrahedron 24, 859–876 (1968).

    Article  Google Scholar 

  9. Ohta, Y. & Hirose, Y. Electrophile-induced cyclization of farnesol. Chem. Lett. 1, 263–266 (1972).

    Article  Google Scholar 

  10. Andersen, N. H. & Syrdal, D. D. Chemical simulation of the biogenesis of cedrene. Tetrahedron Lett. 13, 2455–2458 (1972).

    Article  Google Scholar 

  11. Kobayashi, S., Tsutsui, M. & Mukaiyama, T. Biogenetic-like cyclization of farnesol and nerolidol to bisabolene by the use of 2-fluorobenzothiazolium salt. Chem. Lett. 6, 1169–1172 (1977).

    Article  Google Scholar 

  12. Croteau, R. Biosynthesis and catabolism of monoterpenoids. Chem. Rev. 87, 929–954 (1987).

    Article  CAS  Google Scholar 

  13. Polovinka, M. P. et al. Cyclization and rearrangements of farnesol and nerolidol stereoisomers in superacids. J. Org. Chem. 59, 1509–1517 (1994).

    Article  CAS  Google Scholar 

  14. Zhang, Q. & Tiefenbacher, K. Terpene cyclization catalysed inside a self-assembled cavity. Nat. Chem. 7, 197–202 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, Q., Catti, L., Pleiss, J. & Tiefenbacher, K. Terpene cyclizations inside a supramolecular catalyst: leaving-group-controlled product selectivity and mechanistic studies. J. Am. Chem. Soc. 139, 11482–11492 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, Q., Rinkel, J., Goldfuss, B., Dickschat, J. S. & Tiefenbacher, K. Sesquiterpene cyclizations catalysed inside the resorcinarene capsule and application in the short synthesis of isolongifolene and isolongifolenone. Nat. Catal. 1, 609–615 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, Q. & Tiefenbacher, K. Sesquiterpene cyclizations inside the hexameric resorcinarene capsule: total synthesis of δ-selinene and mechanistic studies. Angew. Chem. Int. Ed. 58, 12688–12695 (2019).

    Article  CAS  Google Scholar 

  18. Syntrivanis, L.-D. et al. Four-step access to the sesquiterpene natural product presilphiperfolan-1β-ol and unnatural derivatives via supramolecular catalysis. J. Am. Chem. Soc. 142, 5894–5900 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Némethová, I., Schmid, D. & Tiefenbacher, K. Supramolecular capsule catalysis enables the exploration of terpenoid chemical space untapped by nature. Angew. Chem. Int. Ed. 62, e202218625 (2023).

    Article  Google Scholar 

  20. Kirby, A. J. Enzyme mechanisms, models, and mimics. Angew. Chem. Int. Ed. 35, 706–724 (1996).

    Article  Google Scholar 

  21. Breslow, R. & Dong, S. D. Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem. Rev. 98, 1997–2012 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Motherwell, W. B., Bingham, M. J. & Six, Y. Recent progress in the design and synthesis of artificial enzymes. Tetrahedron 57, 4663–4686 (2001).

    Article  CAS  Google Scholar 

  23. Koblenz, T. S., Wassenaar, J. & Reek, J. N. H. Reactivity within a confined self-assembled nanospace. Chem. Soc. Rev. 37, 247–262 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Yoshizawa, M., Klosterman, J. K. & Fujita, M. Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. Angew. Chem. Int. Ed. 48, 3418–3438 (2009).

    Article  CAS  Google Scholar 

  25. Wiester, M. J., Ulmann, P. A. & Mirkin, C. A. Enzyme mimics based upon supramolecular coordination chemistry. Angew. Chem. Int. Ed. 50, 114–137 (2011).

    Article  CAS  Google Scholar 

  26. Ajami, D. & Rebek, J. More chemistry in small spaces. Acc. Chem. Res. 46, 990–999 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Raynal, M., Ballester, P., Vidal-Ferran, A. & van Leeuwen, P. W. N. M. Supramolecular catalysis. Part 2: artificial enzyme mimics. Chem. Soc. Rev. 43, 1734–1787 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Brown, C. J., Toste, F. D., Bergman, R. G. & Raymond, K. N. Supramolecular catalysis in metal–ligand cluster hosts. Chem. Rev. 115, 3012–3035 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Leenders, S. H. A. M., Gramage-Doria, R., de Bruin, B. & Reek, J. N. H. Transition metal catalysis in confined spaces. Chem. Soc. Rev. 44, 433–448 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Zarra, S., Wood, D. M., Roberts, D. A. & Nitschke, J. R. Molecular containers in complex chemical systems. Chem. Soc. Rev. 44, 419–432 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Borsato, G. & Scarso, A. in Organic Nanoreactors (ed Samahe Sadjadi) 203–234 (Academic Press, 2016).

  32. Zhang, Q., Catti, L. & Tiefenbacher, K. Catalysis inside the hexameric resorcinarene capsule. Acc. Chem. Res. 51, 2107–2114 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Mouarrawis, V., Plessius, R., van der Vlugt, J. I. & Reek, J. N. H. Confinement effects in catalysis using well-defined materials and cages. Front. Chem. 6, 623 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Ward, M. D., Hunter, C. A. & Williams, N. H. Coordination cages based on bis(pyrazolylpyridine) ligands: structures, dynamic behavior, guest binding, and catalysis. Acc. Chem. Res. 51, 2073–2082 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Hong, C. M., Bergman, R. G., Raymond, K. N. & Toste, F. D. Self-assembled tetrahedral hosts as supramolecular catalysts. Acc. Chem. Res. 51, 2447–2455 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Jongkind, L. J., Caumes, X., Hartendorp, A. P. T. & Reek, J. N. H. Ligand template strategies for catalyst encapsulation. Acc. Chem. Res. 51, 2115–2128 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fang, Y. et al. Catalytic reactions within the cavity of coordination cages. Chem. Soc. Rev. 48, 4707–4730 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Gaeta, C. et al. The hexameric resorcinarene capsule at work: supramolecular catalysis in confined spaces. Chem. Eur. J. 25, 4899–4913 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Percástegui, E. G., Ronson, T. K. & Nitschke, J. R. Design and applications of water-soluble coordination cages. Chem. Rev. 120, 13480–13544 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Némethová, I., Syntrivanis, L.-D. & Tiefenbacher, K. Molecular capsule catalysis: ready to address current challenges in synthetic organic chemistry? Chim. (Aarau) 74, 561–568 (2020).

    Article  Google Scholar 

  41. Morimoto, M. et al. Advances in supramolecular host-mediated reactivity. Nat. Catal. 3, 969–984 (2020).

    Article  CAS  Google Scholar 

  42. Wang, K., Jordan, J. H., Hu, X.-Y. & Wang, L. Supramolecular strategies for controlling reactivity within confined nanospaces. Angew. Chem. Int. Ed. 59, 13712–13721 (2020).

    Article  CAS  Google Scholar 

  43. Grommet, A. B., Feller, M. & Klajn, R. Chemical reactivity under nanoconfinement. Nat. Nanotechnol. 15, 256–271 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Hooley, R. J. No, not that way, the other way: creating active sites in self-assembled host molecules. Synlett 31, 1448–1463 (2020).

    Article  CAS  Google Scholar 

  45. Mitschke, B., Turberg, M. & List, B. Confinement as a unifying element in selective catalysis. Chem 6, 2515–2532 (2020).

    Article  CAS  Google Scholar 

  46. Yu, Y., Yang, J.-M. & Rebek, J. Molecules in confined spaces: reactivities and possibilities in cavitands. Chem 6, 1265–1274 (2020).

    Article  CAS  Google Scholar 

  47. Ashbaugh, H. S., Gibb, B. C. & Suating, P. Cavitand complexes in aqueous solution: collaborative experimental and computational studies of the wetting, assembly, and function of nanoscopic bowls in water. J. Phys. Chem. B 125, 3253–3268 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Takezawa, H. & Fujita, M. Molecular confinement effects by self-assembled coordination cages. Bull. Chem. Soc. Jpn 94, 2351–2369 (2021).

    Article  CAS  Google Scholar 

  49. Gaeta, C. et al. Supramolecular catalysis with self-assembled capsules and cages: what happens in confined spaces. ChemCatChem 13, 1638–1658 (2021).

    Article  CAS  Google Scholar 

  50. MacGillivray, L. R. & Atwood, J. L. A chiral spherical molecular assembly held together by 60 hydrogen bonds. Nature 389, 469–472 (1997).

    Article  CAS  ADS  Google Scholar 

  51. Avram, L. & Cohen, Y. Spontaneous formation of hexameric resorcinarene capsule in chloroform solution as detected by diffusion NMR. J. Am. Chem. Soc. 124, 15148–15149 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Avram, L., Cohen, Y. & Rebek, J. Jr Recent advances in hydrogen-bonded hexameric encapsulation complexes. Chem. Commun. 47, 5368–5375 (2011).

    Article  CAS  Google Scholar 

  53. Yamanaka, M., Shivanyuk, A. & Rebek, J. Kinetics and thermodynamics of hexameric capsule formation. J. Am. Chem. Soc. 126, 2939–2943 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Pahima, E., Zhang, Q., Tiefenbacher, K. & Major, D. T. Discovering monoterpene catalysis inside nanocapsules with multiscale modeling and experiments. J. Am. Chem. Soc. 141, 6234–6246 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Merget, S., Catti, L., Piccini, G. & Tiefenbacher, K. Requirements for terpene cyclizations inside the supramolecular resorcinarene capsule: bound water and its protonation determine the catalytic activity. J. Am. Chem. Soc. 142, 4400–4410 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Sokolova, D., Piccini, G. & Tiefenbacher, K. Enantioselective tail-to-head terpene cyclizations by optically active hexameric resorcin[4]arene capsule derivatives. Angew. Chem. Int. Ed. 61, e202203384 (2022).

    Article  CAS  ADS  Google Scholar 

  57. Sobti, R. R. & Dev, S. Synthesis of (±)-isolongifolene. Tetrahedron Lett. 8, 2893–2895 (1967).

    Article  Google Scholar 

  58. Sobti, R. R. & Dev, S. Studies in sesquiterpenes—XLIII: isolongifolene (part 4): synthesis. Tetrahedron 26, 649–655 (1970).

    Article  CAS  Google Scholar 

  59. Hong, A. Y. & Stoltz, B. M. Enantioselective total synthesis of the reported structures of (-)-9-epi-presilphiperfolan-1-ol and (-)-presilphiperfolan-1-ol: structural confirmation and reassignment and biosynthetic insights. Angew. Chem. Int. Ed. 51, 9674–9678 (2012).

    Article  CAS  Google Scholar 

  60. Catti, L. & Tiefenbacher, K. Intramolecular hydroalkoxylation catalyzed inside a self-assembled cavity of an enzyme-like host structure. Chem. Commun. 51, 892–894 (2015).

    Article  CAS  Google Scholar 

  61. Köster, J. M. & Tiefenbacher, K. Elucidating the importance of hydrochloric acid as a cocatalyst for resorcinarene-capsule-catalyzed reactions. ChemCatChem 10, 2941–2944 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This publication was created as part of National Centre of Competence in Research (NCCR) Catalysis, funded by the Swiss National Science Foundation. L.-D.S. thanks the University of Basel for a Novartis Universität Basel Excellence Scholarship for Life Sciences.

Author information

Authors and Affiliations

Authors

Contributions

I.C. optimized Protocol 2 and wrote a first version of this part. L.-D.S. optimized Protocol 3 and wrote a first version of this part and the introduction. K.T. supervised the project and helped write the protocols.

Corresponding author

Correspondence to Konrad Tiefenbacher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Carmine Gaeta and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Zhang, Q. & Tiefenbacher, K. Nat. Chem. 7, 197–202 (2015): https://doi.org/10.1038/nchem.2181

Zhang, Q. et al. Nat. Catal. 1, 609–615 (2018): https://doi.org/10.1038/s41929-018-0115-4

Syntrivanis, L.-D. et al. J. Am. Chem. Soc. 142, 5894–5900 (2020): https://doi.org/10.1021/jacs.0c01464

Key data used in this protocol

Zhang, Q. et al. Nat. Catal. 1, 609–615 (2018): https://doi.org/10.1038/s41929-018-0115-4

Syntrivanis, L.-D. et al. J. Am. Chem. Soc. 142, 5894–5900 (2020): https://doi.org/10.1021/jacs.0c01464

Extended data

Extended Data Fig. 1 HCl stock solution preparation.

Setup for the preparation of the HCl stock solution in chloroform or benzene.

Extended Data Fig. 2 HCl stock solution titration.

HCl solution titration coloration (a) before endpoint and (b) at the endpoint.

Extended Data Fig. 3 Resorcin[4]arene synthesis.

Resorcin[4]arene synthesis photos (see Procedure for corresponding letters).

Extended Data Fig. 4 Photo of the resorcin[4]arene stock solution prepared in Steps 9–17 of Procedure 2.

Resorcin[4]arene stock solution.

Extended Data Fig. 5 Dissolution of resorcin[4]arene in water-saturated chloroform.

Resorcin[4]arene catalyst in water-saturated chloroform (Procedure 3, Step 5), before (a) and after (b) complete dissolution.

Extended Data Fig. 6 Reaction setup.

Reaction setup (a) screening scale, (b) preparative scale synthesis of isolongifolene (Procedure 2) and (c) preparative scale synthesis of presilphipefolan-1β-ol (Procedure 3).

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and derivation of the equations.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cornu, I., Syntrivanis, LD. & Tiefenbacher, K. Biomimetic tail-to-head terpene cyclizations using the resorcin[4]arene capsule catalyst. Nat Protoc 19, 313–339 (2024). https://doi.org/10.1038/s41596-023-00919-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00919-3

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing