Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemoenzymatic synthesis of C14-functionalized steroids

Abstract

C14-functionalized steroids display biological activity and have been used as medicines. The lack of synthetic methods to access C14-functionalized steroids has, however, impeded steroidal drug discovery. In the present article, we report a modular chemoenzymatic synthesis of a diverse range of C14-functionalized steroids. This method was enabled through identification of a C14α-hydroxylase (CYP14A) from Cochliobolus lunatus, which displays high catalytic efficiency and substrate promiscuity. Protein engineering of CYP14A generated two variants, I111L–M115K and I111L–V124W, with greatly improved C14-hydroxy regiocontrol. Using this biocatalytic method, a range of C14α-hydroxy steroids with a C17 side chain were prepared in good yields, and were transformed into ∆14 olefins through a superficial elimination. The ∆14 olefin served as a versatile handle to install a variety of functional groups at the C14 position through hydro- or difunctionalization. The utility of this method was further demonstrated through application to concise semisynthesis of cardenolide periplogenin, (+)-digitoxigenin and its three diastereomers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Approaches to access C14-functionalized steroids.
Fig. 2: UPLC analysis of the C14α-OH steroids produced by biocatalysis.
Fig. 3: In silico model of CYP14A with substrate 1b.
Fig. 4: C14α-hydroxy dehydration and ∆14 olefin functionalization.
Fig. 5: Facile synthesis of periplogenin.
Fig. 6: Diversity-oriented synthesis of (+)-digitoxigenin and its three diastereomers.

Similar content being viewed by others

Data availability

Crystallographic data for the structure reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition nos. CCDC 2116723 (2b), 2116721 (4cc), 2116722 (4af), 2211826 (4cg), 2116724 (4ch), 2213082 (4ai) and 2213084 (4ci). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures. All other characterization data and detailed experimental procedures are available in the supplementary materials. The sequence of the P450 genes reported in the present article has been deposited in GenBank under accession nos. ON605617 (CYP14A from CGMCC 3.3589 and JTU2.406) and ON605618 (P450lun, from CGMCC 3.4381).

References

  1. Peng, H. et al. A dual role reductase from phytosterols catabolism enables the efficient production of valuable steroid precursors. Angew. Chem. Int. Ed. 60, 5414–5420 (2021).

    Article  CAS  Google Scholar 

  2. El-Seedi, H. R. et al. Cardenolides: insights from chemical structure and pharmacological utility. Pharm. Res. 141, 123–175 (2019).

    Article  CAS  Google Scholar 

  3. Gao, H., Popescu, R., Koppb, B. & Wang, Z. Bufadienolides and their antitumor activity. Nat. Prod. Rep. 28, 953–969 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Zhong, Y. et al. Total synthesis, chemical modification and structure-activity relationship of bufadienolides. Eur. J. Med. Chem. 189, 112038 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Vanos, J. L. & Oldenkamp, E. P. Oestrus control in bitches with proligestone, a new progestational steroid. J. Small. Anim. Pract. 19, 521–529 (1978).

    Article  CAS  PubMed  Google Scholar 

  6. Eichhorn, E. J. & Gheorghiade, M. Digoxin. Prog. Cardiovasc. Dis. 44, 251–266 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Lullmann, H. & Mohr, K. C14-aminosteroid LNF 209, an agent with positive inotropic and antimuscarinic activity. J. Cardiovasc. Pharmacol. 20, 807–812 (1992).

    CAS  PubMed  Google Scholar 

  8. Hogg, J. A. Steroids, the steroid community, and upjohn in perspective: a profile of innovation. Steroids 57, 593–616 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Michalak, M., Michalak, K. & Wicha, J. The synthesis of cardenolide and bufadienolide aglycones, and related steroids bearing a heterocyclic subunit. Nat. Prod. Rep. 34, 361–410 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Heasley, B. Chemical synthesis of the cardiotonic steroid glycosides and related natural products. Chem. Eur. J. 18, 3092–3120 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Breslow, R., Corcoran, R., Dale, J. A., Liu, S. & Kalicky, P. Selective steroid halogenations directed by proximity and substituent effects. J. Am. Chem. Soc. 96, 1973–1974 (1974).

    Article  CAS  Google Scholar 

  12. Welzel, P. & Stein, H. 14β-Hxdroxy steroids—III. Synthesis of digoxigenin from deoxycholic acid. Tetrahedron Lett. 22, 3385–3388 (1981).

    Article  CAS  Google Scholar 

  13. Kirsch, G., Golde, R. & Neef, G. A cycloaddition route to 14-hydroxysteroids. Tetrahedron Lett. 30, 4497–4500 (1989).

    Article  CAS  Google Scholar 

  14. Renata, H., Zhou, Q. & Baran, P. S. Strategic redox relay enables a scalable synthesis of ouabagenin, a bioactive cardenolide. Science 339, 59–63 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Groszek, G., Kurektyrlik, A. & Wicha, J. Synthesis of a cardenolide, 3-O-methyl uzarigenin, with 14-beta-hydroxyandrost-16-ene as the key intermediate. Tetrahedron 45, 2223–2236 (1989).

    Article  CAS  Google Scholar 

  16. Hu, S., Genain, G. & Azerad, R. Microbial transformation of steroids: contribution to 14α-hydroxylations. Steroids 60, 337–352 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Nassiri-Koopaei, N. & Faramarzi, M. A. Recent developments in the fungal transformation of steroids. Biocatal. Biotransfor. 33, 1–28 (2015).

    Article  CAS  Google Scholar 

  18. Kolet, S. P., Haldar, S., Niloferjahan, S. & Thulasiram, H. V. Mucor hiemalis mediated 14α-hydroxylation on steroids: in vivo and in vitro investigations of 14α-hydroxylase activity. Steroids 85, 6–12 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Kollerov, V., Shutov, A., Kazantsev, A. & Donova, M. Biotransformation of androstenedione and androstadienedione by selected Ascomycota and Zygomycota fungal strains. Phytochemistry 169, 1–9 (2020).

    Article  Google Scholar 

  20. Andryushina, V. A. et al. 14α-Hydroxylation of steroids by mycelium of the mold fungus Curvularia lunata (VKPM F-981) to produce precursors for synthesizing new steroidal drugs. Pharmaceut. Chem. J. 47, 103–108 (2013).

    Article  CAS  Google Scholar 

  21. Felpeto-Santero, C., Galan, B. & Garcia, J. L. Engineering the steroid hydroxylating system from Cochliobolus lunatus in Mycolicibacterium smegmatis. Microorganisms 9, 113 (2021).

    Article  Google Scholar 

  22. Chen, J. et al. Production of 14α-hydroxysteroids by a recombinant Saccharomyces cerevisiae biocatalyst expressing of a fungal steroid 14α-hydroxylation system. Appl. Microbiol. Biot. 103, 8363–8374 (2019).

    Article  CAS  Google Scholar 

  23. Permana, D., Niesel, K., Ford, M. J. & Ichinose, H. Latent functions and applications of cytochrome P450 monooxygenases from Thamnidium elegans: a novel biocatalyst for 14α-hydroxylation of testosterone. ACS Omega 7, 13932–13941 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reetz, M. T. Biocatalysis in organic chemistry and biotechnology: past, present, and future. J. Am. Chem. Soc. 135, 12480–12496 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Honig, M., Sondermann, P., Turner, N. J. & Carreira, E. M. Enantioselective chemo- and biocatalysis: partners in retrosynthesis. Angew. Chem. Int. Ed. 56, 8942–8973 (2017).

    Article  Google Scholar 

  26. Rudroff, F. et al. Opportunities and challenges for combining chemo- and biocatalysis. Nat. Catal. 1, 12–22 (2018).

    Article  Google Scholar 

  27. King-Smith, E., Zwick, C. R. III & Renata, H. Applications of oxygenases in the chemo-enzymatic total synthesis of complex natural products. Biochemistry 57, 403–412 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Chakrabarty, S., Romero, E. O., Pyser, J. B., Yazarians, J. A. & Narayan, A. R. H. Chemo-enzymatic total synthesis of natural products. Acc. Chem. Res. 54, 1374–1384 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bering, L., Thompson, J. & Micklefield, J. New reaction pathways by integrating chemo- and biocatalysis. Trends Chem. 4, 392–408 (2022).

    Article  CAS  Google Scholar 

  30. Zawodny, W. et al. Chemoenzymatic synthesis of substituted azepanes by sequential biocatalytic reduction and organolithium-mediated rearrangement. J. Am. Chem. Soc. 140, 17872–17877 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, X. et al. Divergent synthesis of complex diterpenes through a hybrid oxidative approach. Science 369, 799–806 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Craven, E. J. et al. Programmable late-stage C−H bond functionalization enabled by integration of enzymes with chemocatalysis. Nat. Catal. 4, 385–394 (2021).

    Article  CAS  Google Scholar 

  33. Peng, Y. et al. A chemoenzymatic strategy for the synthesis of steroid drugs enabled by P450 monooxygenase-mediated steroidal core modification. ACS Catal. 12, 2907–2914 (2022).

    Article  CAS  Google Scholar 

  34. Crossley, S. W. M., Obradors, C., Martinez, R. M. & Shenvi, R. A. Mn-, Fe-, and Co-catalyzed radical hydrofunctionalizations of olefins. Chem. Rev. 116, 8912–9000 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao, Y. et al. Biocatalytic C14-hydroxylation on androstenedione enabled modular synthesis of cardiotonic steroids. ACS Catal. 12, 9839–9845 (2022).

    Article  CAS  Google Scholar 

  36. Kille, S., Zilly, F. E., Acevedo, J. P. & Reetz, M. T. Regio- and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution. Nat. Chem. 3, 738 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Grobe, S. et al. Engineering regioselectivity of a P450 monooxygenase enables the synthesis of ursodeoxycholic acid via 7β-hydroxylation of lithocholic acid. Angew. Chem. Int. Ed. 60, 753–757 (2021).

    Article  CAS  Google Scholar 

  38. Li, A. et al. Regio-and stereoselective steroid hydroxylation at C7 by cytochrome|P450 monooxygenase mutants. Angew. Chem. Int. Ed. 59, 12499–12505 (2020).

    Article  CAS  Google Scholar 

  39. Chen, W., Fisher, M. J., Leung, A., Cao, Y. & Wong, L. L. Oxidative diversification of steroids by nature-inspired scanning glycine mutagenesis of P450BM3 (CYP102A1). ACS Catal. 10, 8334–8343 (2020).

    Article  CAS  Google Scholar 

  40. Acevedo-Rocha, C. G. et al. P450-catalyzed regio- and diastereoselective steroid hydroxylation: efficient directed evolution enabled by mutability landscaping. ACS Catal. 8, 3395–3410 (2018).

    Article  CAS  Google Scholar 

  41. Khatri, Y. et al. Structure-based engineering of steroidogenic CYP260A1 for stereo- and regioselective hydroxylation of progesterone. ACS Chem. Biol. 13, 1021–1028 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Szaleniec, M., Wojtkiewicz, A. M., Bernhardt, R., Borowski, T. & Donova, M. Bacterial steroid hydroxylases: enzyme classes, their functions and comparison of their catalytic mechanisms. Appl. Microbiol. Biotechnol. 102, 8153–8171 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bureik, M. & Bernhardt, R. in Modern Biooxidation: Enzymes, reactions and applications (eds. Schmid, R. D. & Urlacher, V. B.) 155–176 (Wiley-VCH, 2007).

  44. Bracco, P. et al. CYP154C5 regioselectivity in steroid hydroxylation explored by substrate modifications and protein engineering. ChemBioChem 22, 1099–1110 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Kim, D. E., Chivian, D. & Baker, D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 32, 526–531 (2004).

    Article  Google Scholar 

  46. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reetz, M. T. & Carballeira, J. D. Iterative saturated mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat. Protoc. 2, 891–903 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Reetz, M. T., Carballeira, J. D. & Vogel, A. Iterative saturated mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew. Chem. Int. Ed. 45, 7745–7751 (2006).

    Article  CAS  Google Scholar 

  49. Liu, B., Yang, L., Li, P., Wang, F. & Li, X. Recent advances in transition metal-catalyzed olefinic C-H functionalization. Org. Chem. Front. 8, 1085–1101 (2021).

    Article  CAS  Google Scholar 

  50. Bhunia, A., Bergander, K., Daniliuc, C. G. & Studer, A. Fe-catalyzed anaerobic mukaiyama-type hydration of alkenes using nitroarenes. Angew. Chem. Int. Ed. 60, 2–10 (2021).

    Article  Google Scholar 

  51. Barker, T. J. & Boger, D. L. Fe (III)/NaBH4-mediated free radical hydrofluorination of unactivated alkenes. J. Am. Chem. Soc. 134, 13588–13591 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Leggans, E. K., Barker, T. J., Duncan, K. K. & Boger, D. L. Iron (III)/NaBH4-mediated additions to unactivated alkenes: synthesis of novel 20′-vinblastine analogues. Org. Lett. 14, 1428–1431 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ma, X. & Herzon, S. B. Non-classical selectivities in the reduction of alkenes by cobalt-mediated hydrogen atom transfer. Chem. Sci. 6, 6250–6255 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lo, J. C., Yabe, Y. & Baran, P. S. A practical and catalytic reductive olefin coupling. J. Am. Chem. Soc. 136, 1304–1307 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Anastasia, M., Fiecchi, A. & Scala, A. Side-chain inversion of steroidal olefins promoted by hydrogen chloride. J. Org. Chem. 43, 3505–3508 (1978).

    Article  CAS  Google Scholar 

  56. Fujimoto, Y., Morisaki, M., Ikekawa, N., Horie, Y. & Nakasone, S. Synthesis of 24,28-iminofucosterol and its inhibitory effects on growth and steroid metabolism in the silkworm, Bombyx mori. Steroids 24, 367–375 (1974).

    Article  CAS  PubMed  Google Scholar 

  57. Chen, J., Kilpatrick, B., Oliver, A. G. & Wulff, J. E. Expansion of Thiele’s acid chemistry in pursuit of a suite of conformationally constrained scaffolds. J. Org. Chem. 80, 8979–8989 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Jung, M. E. & Yoo, D. First total synthesis of rhodexin A. Org. Lett. 13, 2698–2701 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Mukaiyama, T. & Yamada, T. Recent advances in aerobic oxygenation. Bull. Chem. Soc. Jpn 68, 17–35 (1995).

    Article  CAS  Google Scholar 

  60. Cheng, M. et al. Asymmetric total synthesis of bufospirostenin A. J. Am. Chem. Soc. 142, 12602–12607 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Engman, L. & Stem, D. Thiol/Diselenide exchange for the generation of benzeneselenolate ion. Catalytic reductive ring-opening of α,β-epoxy ketone. J. Org. Chem. 59, 5179–5183 (1994).

    Article  CAS  Google Scholar 

  62. Fernandes, R. A. (ed.) Protecting-Group-Free Organic Synthesis: Improving Economy and Efficiency (John Wiley & Sons, 2018).

  63. Burke, M. D. & Schreiber, S. L. A planning strategy for diversity-oriented synthesis. Angew. Chem. Int. Ed. 43, 46–58 (2004).

    Article  Google Scholar 

  64. Galloway, W. R. J. D., Isidro-Llobet, A. & Spring, D. R. Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nat. Commun. 1, 80–93 (2010).

    Article  PubMed  Google Scholar 

  65. Freitas, C. S. et al. Digitoxigenin presents an effective and selective antileishmanial action against Leishmania infantum and is a potential therapeutic agent for visceral leishmaniasis. Parasitol. Res. 120, 321–335 (2021).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank X.-G. Meng (CCNU) for X-ray crystallographic analysis assistance, L. Shao (Shanghai Institute of Pharmaceutical Industry) for kind gifting of C. lunatus JTU 2.406, H.-G. Cheng, T. Yang, J.-X. Ye, L. Zhou and H. Wei (WHU) for helpful discussions, and L. Cao (WHU) for assistance with the preparation of the manuscript. This work was supported by the National Key R&D Program of China (grant no. 2018YFA0900400 to X.Q.), the Fundamental Research Funds for the Central Universities (grant no. 2042021kf0214 to Q.Z.) and the start-up funding from Wuhan University. We dedicate this paper to Professor Dawei Ma (SIOC) on the occasion of his 60th birthday.

Author information

Authors and Affiliations

Authors

Contributions

Q.Z. and X.Q. conceived this project. F.S., M.Z., J.W., H.L., Z.L. and B.L. performed the experiment under the supervision of X.Q., Q.Z. and Z.D. H.C. performed the test and analysis of single crystal structures. F.S., M.Z., Q.Z. and X.Q. cowrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Qianghui Zhou or Xudong Qu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Thomas Bayer, Sebastian Cosgrove, Yang Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–6 and Figs. 1–7.

Reporting Summary

Supplementary Data 1

Crystallographic Data for 2b, CCDC2116723.

Supplementary Data 2

Crystallographic Data for 4af, CCDC 2116722.

Supplementary Data 3

Crystallographic Data for 4ai, CCDC 2213082.

Supplementary Data 4

Crystallographic Data for4cc, CCDC 2116721.

Supplementary Data 5

Crystallographic Data for 4cg, CCDC 2211826.

Supplementary Data 6

Crystallographic Data for 4ch, CCDC 2116724.

Supplementary Data 7

Crystallographic Data for 4ci CCDC 2213084.

Supplementary Table 8

Source data for Supplementary Figs. 4a and 5aa–5ma.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, F., Zheng, M., Wang, J. et al. Chemoenzymatic synthesis of C14-functionalized steroids. Nat. Synth 2, 729–739 (2023). https://doi.org/10.1038/s44160-023-00280-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00280-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing