Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Fabrication of angstrom-scale two-dimensional channels for mass transport

Abstract

Fluidic channels at atomic scales regulate cellular trafficking and molecular filtration across membranes, and thus play crucial roles in the functioning of living systems. However, constructing synthetic channels experimentally at these scales has been a significant challenge due to the limitations in nanofabrication techniques and the surface roughness of the commonly used materials. Angstrom (Å)-scale slit-like channels overcome such challenges as these are made with precise control over their dimensions and can be used to study the fluidic properties of gases, ions and water at unprecedented scales. Here we provide a detailed fabrication method of the two-dimensional Å-scale channel devices that can be assembled to contain a desired number of channels, a single channel or up to hundreds of channels, made with atomic-scale precision using layered crystals. The procedure includes the fabrication of the substrate, flake, spacer layer, flake transfers, van der Waals assembly and postprocessing. We further explain how to perform molecular transport measurements with the Å-channels to directly probe the intriguing and anomalous phenomena that help shed light on the physics governing ultra-confined transport. The procedure requires a total of 1–2 weeks for the fabrication of the two-dimensional channel device and is suitable for users with prior experience in clean room working environments and nanofabrication.

Key points

  • Angstrom-scale fluidic devices enable measurement of ballistic gas flows, ultrafast water permeation, steric ion exclusion and voltage gating of currents. The authors detail the fabrication of the substrate, flake, spacer layer and flake transfers, as well as van der Waals assembly and postprocessing.

  • Compared with nanofluidic devices such as nanotubes, lithographically patterned/etched channels and two-dimensional laminates, angstrom-scale channels have atomically flat, pristine and mechanically robust walls with programmable lengths, widths and heights.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ångstrom-scale channels.
Fig. 2: Flow chart of the Å-scale device fabrication.
Fig. 3: Overview of the fabrication process.
Fig. 4: Molecular transport through Å-channel devices.
Fig. 5: Schematic for the fabrication process of micrometer-size SiNx holes at wafer scale.
Fig. 6: Representative optical images of exfoliated flakes for preparing channels.
Fig. 7: Fabrication of spacers using EBL.
Fig. 8: AFM images of spacers.
Fig. 9: Photograph of the in-house flake transfer setup.
Fig. 10: Schematics of the wet transfer process.
Fig. 11: Device postprocessing to open channels via gold patch.
Fig. 12: Gas flow measurement setup.
Fig. 13: Gravimetric sample holder and measurement setup.
Fig. 14: An electrochemical measurement setup.
Fig. 15: Clewin design file on a 4-inch wafer, with a distance between two windows of 11,000 µm.
Fig. 16: Anticipated results: evaluation of devices.
Fig. 17: Anticipated results: effect of clogging and regeneration of devices.
Fig. 18: Anticipated results: gas flow measurement through the 2D channels device.
Fig. 19: Anticipated results: water flow measurement through 2D channel devices.
Fig. 20: Anticipated results: ion and pressure driven transport measurements in Å-channels.

Similar content being viewed by others

Data availability

The main data discussed in this protocol are available in the supporting primary research papers57,59,61,95.

References

  1. Eijkel, J. C. T. & van den Berg, A. Nanofluidics: what is it and what can we expect from it? Microfluid. Nanofluidics. 1, 249–267 (2005).

    Article  CAS  Google Scholar 

  2. Bocquet, L. & Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39, 1073–1095 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Convery, N. & Gadegaard, N. 30 years of microfluidics. Micro Nano. Eng. 2, 76–91 (2019).

    Article  Google Scholar 

  4. van den Berg, A., Craighead, H. G. & Yang, P. From microfluidic applications to nanofluidic phenomena. Chem. Soc. Rev. 39, 899–900 (2010).

    Article  PubMed  Google Scholar 

  5. Agre, P. The aquaporin water channels. Proc. Am. Thorac. Soc. 3, 5–13 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Israelachvili, J. N. Intermolecular and Surface Forces (Academic Press, 2011).

  7. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Article  Google Scholar 

  8. Deng, H. et al. Multiple functional groups of varying ratios in metal–organic frameworks. Science 327, 846 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Koenig, S. P., Wang, L., Pellegrino, J. & Bunch, J. S. Selective molecular sieving through porous graphene. Nat. Nanotechnol. 7, 728–732 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Celebi, K. et al. Ultimate permeation across atomically thin porous graphene. Science 344, 289 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Jiang, D.-E., Cooper, V. R. & Dai, S. Porous graphene as the ultimate membrane for gas separation. Nano Lett. 9, 4019–4024 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Berezhkovskii, A. & Hummer, G. Single-file transport of water molecules through a carbon nanotube. Phys. Rev. Lett. 89, 064503 (2002).

    Article  PubMed  Google Scholar 

  14. Lee, C. Y., Choi, W., Han, J.-H. & Strano, M. S. Coherence resonance in a single-walled carbon nanotube ion channel. Science 329, 1320 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Secchi, E. et al. Massive radius-dependent flow slippage in carbon nanotubes. Nature 537, 210–213 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Won, C. Y. & Aluru, N. R. Water permeation through a subnanometer boron nitride nanotube. J. Am. Chem. Soc. 129, 2748–2749 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Siria, A. et al. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494, 455–458 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, G., Jin, W. & Xu, N. Graphene-based membranes. Chem. Soc. Rev. 44, 5016–5030 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Gogotsi, Y. & Anasori, B. The rise of MXenes. ACS Nano 13, 8491–8494 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).

    Article  CAS  Google Scholar 

  23. Anasori, B. et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9, 9507–9516 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Majumder, M., Chopra, N., Andrews, R. & Hinds, B. J. Enhanced flow in carbon nanotubes. Nature 438, 44 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Feng, J. et al. Observation of ionic coulomb blockade in nanopores. Nat. Mater. 15, 850–855 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Ayuk, E., Ugwu, M. & Aronimo, S. B. A review on synthetic methods of nanostructured materials. Chem. Res. J. 2, 97–123 (2017).

    CAS  Google Scholar 

  27. Biswas, A. et al. Advances in top-down and bottom-up surface nanofabrication: techniques, applications and future prospects. Adv. Colloid Interface Sci. 170, 2–27 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, Q. & Liu, Z. Fabrication and applications of solid-state nanopores. Sensors 19, 1886 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Storm, A., Chen, J., Ling, X., Zandbergen, H. & Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537–540 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Kim, M. J., McNally, B., Murata, K. & Meller, A. Characteristics of solid-state nanometre pores fabricated using a transmission electron microscope. Nanotechnology 18, 205302 (2007).

    Article  Google Scholar 

  31. Lin, Y., Ying, Y.-L., Shi, X., Liu, S.-C. & Long, Y.-T. Direct sensing of cancer biomarkers in clinical samples with a designed nanopore. Chem. Commun. 53, 11564–11567 (2017).

    Article  CAS  Google Scholar 

  32. Krapf, D. et al. Fabrication and characterization of nanopore-based electrodes with radii down to 2 nm. Nano Lett. 6, 105–109 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Lo, C. J., Aref, T. & Bezryadin, A. Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams. Nanotechnology 17, 3264 (2006).

    Article  CAS  Google Scholar 

  34. Gierak, J. et al. Sub-5 nm FIB direct patterning of nanodevices. Microelectron. Eng. 84, 779–783 (2007).

    Article  CAS  Google Scholar 

  35. O’Hern, S. C. et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 14, 1234–1241 (2014).

    Article  PubMed  Google Scholar 

  36. Russo, C. J. & Golovchenko, J. A. Atom-by-atom nucleation and growth of graphene nanopores. Proc. Natl Acad. Sci. USA 109, 5953–5957 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Walker, M. I. et al. Extrinsic cation selectivity of 2D membranes. ACS Nano 11, 1340–1346 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Zhou, Z. et al. DNA translocation through hydrophilic nanopore in hexagonal boron nitride. Sci. Rep. 3, 3287 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  39. Danda, G. et al. Monolayer WS2 nanopores for DNA translocation with light-adjustable sizes. ACS Nano 11, 1937–1945 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Mojtabavi, M., VahidMohammadi, A., Liang, W., Beidaghi, M. & Wanunu, M. Single-molecule sensing using nanopores in two-dimensional transition metal carbide (MXene) membranes. ACS Nano 13, 3042–3053 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Murray, D. J. et al. Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface. J. Am. Chem. Soc. 137, 3450–3453 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Guan, C. Z., Wang, D. & Wan, L. J. Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation. Chem. Commun. 48, 2943–2945 (2012).

    Article  CAS  Google Scholar 

  43. Dey, K. et al. Selective molecular separation by interfacially crystallized covalent organic framework thin films. J. Am. Chem. Soc. 139, 13083–13091 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Spitzer, S. et al. Solvent-free on-surface synthesis of boroxine COF monolayers. Chem. Commun. 53, 5147–5150 (2017).

    Article  CAS  Google Scholar 

  45. Kambe, T. et al. pi-Conjugated nickel bis(dithiolene) complex nanosheet. J. Am. Chem. Soc. 135, 2462–2465 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Motoyama, S., Makiura, R., Sakata, O. & Kitagawa, H. Highly crystalline nanofilm by layering of porphyrin metal–organic framework sheets. J. Am. Chem. Soc. 133, 5640–5643 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Kidambi, P. R. et al. Facile fabrication of large-area atomically thin membranes by direct synthesis of graphene with nanoscale porosity. Adv. Mater. 30, 1804977 (2018).

    Article  Google Scholar 

  48. Liu, J. et al. Hydrophobic, flexible, and lightweight mxene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29, 1702367 (2017).

    Article  Google Scholar 

  49. Moreno, C. et al. Bottom-up synthesis of multifunctional nanoporous graphene. Science 360, 199–203 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Shao, J. J., Raidongia, K., Koltonow, A. R. & Huang, J. Self-assembled two-dimensional nanofluidic proton channels with high thermal stability. Nat. Commun. 6, 7602 (2015).

    Article  PubMed  Google Scholar 

  51. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Frisenda, R. et al. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 47, 53–68 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).

    Article  PubMed  Google Scholar 

  54. Huang, Y. et al. Emerging magnetic interactions in van der Waals heterostructures. Nano Lett. 20, 7852–7859 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Pham, D. K. Electronic properties of a two-dimensional van der Waals MoGe2N4/MoSi2N4 heterobilayer: effect of the insertion of a graphene layer and interlayer coupling. RSC Adv. 11, 28659–28666 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Radha, B. et al. Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222–225 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Esfandiar, A. et al. Size effect in ion transport through angstrom-scale slits. Science 358, 511–513 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Keerthi, A. et al. Ballistic molecular transport through two-dimensional channels. Nature 558, 420–424 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Gopinadhan, K. et al. Complete steric exclusion of ions and proton transport through confined monolayer water. Science 363, 145–148 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Mouterde, T. et al. Molecular streaming and its voltage control in ångström-scale channels. Nature 567, 87–90 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Fumagalli, L. et al. Anomalously low dielectric constant of confined water. Science 360, 1339–1342 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Yang, W. et al. Translocation of DNA through ultrathin nanoslits. Adv. Mater. 33, 2007682 (2021).

    Article  CAS  Google Scholar 

  64. Knudsen, M. Die gesetze der molekularströmung und der inneren reibungsströmung der gase durch röhren. Ann. der Phys. 333, 75–130 (1909).

    Article  Google Scholar 

  65. Smoluchowski, M. V. Zur kinetischen theorie der transpiration und diffusion verdünnter gase. Ann. der Phys. 338, 1559–1570 (1910).

    Article  Google Scholar 

  66. Livesey, R. G. & Lafferty, J. M. Foundations of Vacuum Science and Technology (Wiley, 1998).

  67. Lei, W., Rigozzi, M. K. & McKenzie, D. R. The physics of confined flow and its application to water leaks, water permeation and water nanoflows: a review. Rep. Prog. Phys. 79, 025901 (2016).

    Article  PubMed  Google Scholar 

  68. Han, Y.-L., Phillip Muntz, E., Alexeenko, A. & Young, M. Experimental and computational studies of temperature gradient–driven molecular transport in gas flows through nano/microscale channels. Nanoscale Microscale Thermophys. Eng. 11, 151–175 (2007).

    Article  CAS  Google Scholar 

  69. Scorrano, G. et al. Gas flow at the ultra-nanoscale: universal predictive model and validation in nanochannels of ångstrom-level resolution. ACS Appl. Mater. Interfaces 10, 32233–32238 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Majumder, M., Chopra, N. & Hinds, B. J. Mass transport through carbon nanotube membranes in three different regimes: Ionic diffusion and gas and liquid flow. ACS Nano 5, 3867–3877 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Steckelmacher, W. A review of the molecular flow conductance for systems of tubes and components and the measurement of pumping speed. Vacuum 16, 561–584 (1966).

    Article  CAS  Google Scholar 

  73. Bhatia, S., Bonilla, M. & Nicholson, D. Molecular transport in nanopores: a theoretical perspective. Phys. Chem. Chem. Phys. 13, 15350–15383 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Cohen-Tanugi, D. & Grossman, J. C. Water desalination across nanoporous graphene. Nano Lett. 12, 3602–3608 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Heiranian, M., Farimani, A. B. & Aluru, N. R. Water desalination with a single-layer MoS2 nanopore. Nat. Commun. 6, 8616 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Konatham, D., Yu, J., Ho, T. A. & Striolo, A. Simulation insights for graphene-based water desalination membranes. Langmuir 29, 11884–11897 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Gai, J.-G., Gong, X.-L., Wang, W.-W., Zhang, X. & Kang, W.-L. An ultrafast water transport forward osmosis membrane: porous graphene. J. Mater. Chem. A. 2, 4023–4028 (2014).

    Article  CAS  Google Scholar 

  78. Hummer, G., Rasaiah, J. C. & Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Qin, X., Yuan, Q., Zhao, Y., Xie, S. & Liu, Z. Measurement of the rate of water translocation through carbon nanotubes. Nano Lett. 11, 2173–2177 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Falk, K., Sedlmeier, F., Joly, L., Netz, R. R. & Bocquet, L. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 10, 4067–4073 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Mücksch, C., Rösch, C., Müller−Renno, C., Ziegler, C. & Urbassek, H. M. Consequences of hydrocarbon contamination for wettability and protein adsorption on graphite surfaces. J. Phys. Chem. C. 119, 12496–12501 (2015).

    Article  Google Scholar 

  82. Yang, Q. et al. Capillary condensation under atomic-scale confinement. Nature 588, 250–253 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Haigh, S. J. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Bao, W. et al. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat. Nanotechnol. 4, 562–566 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Garaj, S. et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Kim, K., Luo, H., Zhu, T., Pierron, O. N. & Graham, S. Influence of polymer substrate damage on the time dependent cracking of SiNx barrier films. Sci. Rep. 8, 4560 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  87. Garcia, S. P., Bao, H. & Hines, M. A. Etchant anisotropy controls the step bunching instability in KOH etching of silicon. Phys. Rev. Lett. 93, 166102 (2004).

    Article  PubMed  Google Scholar 

  88. Graf, M. et al. Fabrication and practical applications of molybdenum disulfide nanopores. Nat. Protoc. 14, 1130–1168 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Sato, K. et al. Characterization of orientation-dependent etching properties of single-crystal silicon: effects of KOH concentration. Sens. Actuator A Phys. 64, 87–93 (1998).

    Article  CAS  Google Scholar 

  90. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Blake, P. et al. Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007).

    Article  Google Scholar 

  92. Gorbachev, R. V. et al. Hunting for monolayer boron nitride: optical and Raman signatures. Small 7, 465–468 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Nair, R. R. et al. Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy. Appl. Phys. Lett. 97, 3 (2010).

    Article  Google Scholar 

  94. Tu, J.-S. in Alignment Controlled Graphene on hBN Substrate for Graphene Based Capacitor and Tunneling Transistor (University of Manchester, 2015).

  95. Sajja, R. et al. Hydrocarbon contamination in angström-scale channels. Nanoscale 13, 9553–9560 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Wright, M. R. in An Introduction to Aqueous Electrolyte Solutions (John Wiley, 2007).

  97. Haynes, W. M. in CRC Handbook of Chemistry and Physics (CRC Press, 2016).

  98. Perram, J. W. & Stiles, P. J. On the nature of liquid junction and membrane potentials. Phys. Chem. Chem. Phys. 8, 4200–4213 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Keerthi, A. et al. Water friction in nanofluidic channels made from two-dimensional crystals. Nat. Commun. 12, 3092 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Robin, P. et al. Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science 379, 161–167 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.K. acknowledges Royal Society research grants (RGS\R2\202036 and IES\R3\203066), EPSRC new horizons grant (EP/V048112/1). B.R. and A.K. acknowledge the EPSRC strategic equipment grant (EP/W006502/1). B.R. acknowledges funding from the Royal Society University Research Fellowship (URF\R1\180127, RF\ERE\210016), Philip Leverhulme Prize PLP-2021-262, EPSRC New Horizons grant EP/X019225/1 and funding from the European Union’s H2020 Framework Programme/European Research Council Starting Grant (852674–AngstroCAP). R.Q. acknowledges a CSC scholarship. All authors are thankful to M. Sellers and D. Mccullagh for their technical support for custom design and manufacturing of electrochemical cells and gas transport holders.

Author information

Authors and Affiliations

Authors

Contributions

A.K., A.B., Y.Y., R.S., R.Q., S.A.D. and M.R. carried out the fabrication of Å-channel devices. A.K., B.R., A.B., R.S. and M.V.S.M. carried out the device characterization. S.G. performed the ion conductance measurements and their analysis. A.B., M.V.S.M., Y.Y., B.R. and A.K. wrote the manuscript with inputs from M.R., R.S. and S.G. All the authors contributed to discussions. A.K. and B.R. provided supervision for the protocol.

Corresponding authors

Correspondence to Boya Radha or Ashok Keerthi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Radha, B. et al. Nature 538, 222–225 (2016): https://doi.org/10.1038/nature19363

Keerthi, A. et al. Nature 558, 420–424 (2018): https://doi.org/10.1038/s41586-018-0203-2

Gopinadhan, K. et al. Science 363, 145–148 (2019): https://doi.org/10.1126/science.aau6771

Mouterde, T. et al. Nature 567, 87–90 (2019): https://doi.org/10.1038/s41586-019-0961-5

Robin, P. et al. Science 379, 161–167 (2023): https://doi.org/10.1126/science.adc9931

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, A., Surmani Martins, M.V., You, Y. et al. Fabrication of angstrom-scale two-dimensional channels for mass transport. Nat Protoc 19, 240–280 (2024). https://doi.org/10.1038/s41596-023-00911-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00911-x

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing