Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Scalable single-cell profiling of chromatin modifications with sciCUT&Tag

Abstract

Cleavage under targets and tagmentation (CUT&Tag) is an antibody-directed in situ chromatin profiling strategy that is rapidly replacing immune precipitation-based methods, such as chromatin immunoprecipitation–sequencing. The efficiency of the method enables chromatin profiling in single cells but is limited by the numbers of cells that can be profiled. Here, we describe a combinatorial barcoding strategy for CUT&Tag that harnesses a nanowell dispenser for simple, high-resolution, high-throughput, single-cell chromatin profiling. In this single-cell combinatorial indexing CUT&Tag (sciCUT&Tag) protocol, lightly cross-linked nuclei are bound to magnetic beads and incubated with primary and secondary antibodies in bulk and then arrayed in a 96-well plate for a first round of cellular indexing by antibody-directed Tn5 tagmentation. The sample is then repooled, mixed and arrayed across 5,184 nanowells at a density of 12–24 nuclei per well for a second round of cellular indexing during PCR amplification of the sequencing-ready library. This protocol can be completed in 1.5 days by a research technician, and we illustrate the optimized protocol by profiling histone modifications associated with developmental gene repression (H3K27me3) as well as transcriptional activation (H3K4me1-2-3) in human peripheral blood mononuclear cells and use single-nucleotide polymorphisms to facilitate collision removal. We have also used sciCUT&Tag for simultaneous profiling of multiple chromatin epitopes in single cells. The reduced cost, improved resolution and scalability of sciCUT&Tag make it an attractive platform to profile chromatin features in single cells.

Key points

  • This protocol describes a method for the single-cell profiling of epigenetic marks.

  • Compared with other single-cell chromatin profiling methods, single-cell combinatorial indexing cleavage under targets and tagmentation can profile a greater number of cells while maintaining the optimal reaction chemistry for efficient PCR amplification of tagmented chromatin, thereby increasing the number of unique reads recovered per cell relative to droplet-based approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the sciCUT&Tag experimental workflow.
Fig. 2: Validation of a de novo genotyping strategy for SNP-based collision removal in sciCUT&Tag of mixed-donor PBMCs.
Fig. 3: Systematic investigation of dimensionality reduction parameters for sciCUT&Tag.
Fig. 4: Tunable combinatorial indexing in sciCUT&Tag with the ICELL8 system.
Fig. 5: Visual inspection of genomic coverage and peak-calling analysis.
Fig. 6: sciCUT&Tag supports graph-based clustering and cell type annotation of human PBMCs.
Fig. 7: Orthogonal validation of sciCUT&Tag cell-type annotation by bulk projection of public data.

Similar content being viewed by others

Data availability

The primary sequencing data from the barnyard experiment, mixing human and mouse cell lines, as well as single-donor and mixed-donor PBMC sciCUT&Tag experiments have been deposited as paired-end fastq files that retain the unique cellular barcodes in the Gene Expression Omnibus accession GSE224579.

Code availability

Custom code used for demultiplexing, concatenating and aligning to hg38 and mm10 reference genomes for the barnyard experiment (Snakemake41), and running Souporcell24 (Nextflow26) as well as code for generating figures is available at https://github.com/FredHutch/sciCnT_manuscript_2023. Processed data used for making figures is available at https://doi.org/10.5281/zenodo.7884460. Aggregated sciCnT PBMC coverage profiles and peak calls are interactively available at https://genome.ucsc.edu/s/jegreene/sciCnT_HOX.

References

  1. Talbert, P. B. & Henikoff, S. The yin and yang of histone marks in transcription. Annu. Rev. Genomics Hum. Genet. 22, 147–170 (2021).

    Article  PubMed  Google Scholar 

  2. Blanco, M. A. et al. Chromatin-state barriers enforce an irreversible mammalian cell fate decision. Cell Rep. 37, 109967 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bartosovic, M., Kabbe, M. & Castelo-Branco, G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nat. Biotechnol. 39, 825–835 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu, S. J. et al. Single-cell CUT&Tag analysis of chromatin modifications in differentiation and tumor progression. Nat. Biotechnol. 39, 819–824 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhu, C. et al. Joint profiling of histone modifications and transcriptome in single cells from mouse brain. Nat. Methods 18, 283–292 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, B. et al. Characterizing cellular heterogeneity in chromatin state with scCUT&Tag-pro. Nat. Biotechnol. 40, 1220–1230 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Meers, M. P., Llagas, G., Janssens, D. H., Codomo, C. A. & Henikoff, S. Multifactorial profiling of epigenetic landscapes at single-cell resolution using MulTI-Tag. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01522-9 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cao, J. et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357, 661–667 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cusanovich, D. A. et al. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bartlett, D. A. et al. High-throughput single-cell epigenomic profiling by targeted insertion of promoters (TIP-seq). J. Cell Biol. 220, e202103078 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, Q. et al. CoBATCH for high-throughput single-cell epigenomic profiling. Mol. Cell 76, 206–216.e207 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Martin, B. K. et al. Optimized single-nucleus transcriptional profiling by combinatorial indexing. Nat. Protoc. https://doi.org/10.1038/s41596-022-00752-0 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Del Priore, I. et al. Protocol for single-cell ATAC sequencing using combinatorial indexing in mouse lung adenocarcinoma. STAR Protoc. 2, 100583 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mezger, A. et al. High-throughput chromatin accessibility profiling at single-cell resolution. Nat. Commun. 9, 3647 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kaya-Okur, H. S., Janssens, D. H., Henikoff, J. G., Ahmad, K. & Henikoff, S. Efficient low-cost chromatin profiling with CUT&Tag. Nat. Protoc. 15, 3264–3283 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ren, X. et al. COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. Cell 184, 1895–1913 e1819 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Granja, J. M. et al. Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia. Nat. Biotechnol. 37, 1458–1465 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, C. et al. Single-cell multiomics reveals increased plasticity, resistant populations, and stem-cell-like blasts in KMT2A-rearranged leukemia. Blood 139, 2198–2211 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bartosovic, M. & Castelo-Branco, G. Multimodal chromatin profiling using nanobody-based single-cell CUT&Tag. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01535-4 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Stuart, T. et al. Nanobody-tethered transposition enables multifactorial chromatin profiling at single-cell resolution. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01588-5 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fujiwara, Y. & Okada, Y. CUT&Tag using “stress-free” Con A-conjugated dynabeads((R)). Methods Mol. Biol. 2519, 141–153 (2023).

    Article  PubMed  Google Scholar 

  24. Heaton, H. et al. Souporcell: robust clustering of single-cell RNA-seq data by genotype without reference genotypes. Nat. Methods 17, 615–620 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Ewels, P. A. et al. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 38, 276–278 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Di Tommaso, P. et al. Nextflow enables reproducible computational workflows. Nat. Biotechnol. 35, 316–319 (2017).

    Article  PubMed  Google Scholar 

  27. Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 53, 403–411 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McInnes, L., Healy, J., & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. J. Open Source Softw. 3, 861 (2018).

    Article  Google Scholar 

  29. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Janssens, D. H. et al. Automated CUT&Tag profiling of chromatin heterogeneity in mixed-lineage leukemia. Nat. Genet. 53, 1586–1596 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975–978 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Meers, M. P., Tenenbaum, D. & Henikoff, S. Peak calling by sparse enrichment analysis for CUT&RUN chromatin profiling. Epigenetics Chromatin 12, 42 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dou, Y. et al. Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat. Struct. Mol. Biol. 13, 713–719 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  35. Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lebert-Ghali, C.-É. et al. Hoxa cluster genes determine the proliferative activity of adult mouse hematopoietic stem and progenitor cells. Blood 127, 87–90 (2016).

    Article  PubMed  Google Scholar 

  37. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  38. Simon, J. A. & Kingston, R. E. Occupying chromatin: polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol. Cell 49, 808–824 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wysocka, J. et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442, 86–90 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Cruz, C. et al. Tri-methylation of histone H3 lysine 4 facilitates gene expression in ageing cells. eLife 7, e34081 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mölder, F. et al. Sustainable data analysis with Snakemake. F1000 Res. https://doi.org/10.12688/f1000research.29032.2 (2021).

Download references

Acknowledgements

We thank members of our laboratory and colleagues at the Fred Hutch for providing valuable discussions and input as we developed this protocol. Specifically, we thank Fred Hutchinson Cancer Center Genomics and Bioinformatics Core Facility for sequencing expertise and services; M. Fitzgibbons for help with demultiplexing, J. Henikoff for help with genomic alignment; M. Setty, D.Otto, A.-L. Doebley and O. Waltner for bioinformatics advice; S. Bhise for help with preparing the human PBMC samples; and J. Cherone, P. Zrazhevskiy and the Andrew Stergachis laboratory for their helpful feedback on the manuscript. We are especially grateful to the many Protocols.io subscribers around the world who have tried CUT&Tag and provided helpful comments and feedback that have enriched this protocol. This work was supported by the Howard Hughes Medical Institute (S.H.), grant R01 HG010492 (S.H.) from the National Institutes of Health, and a Hartwell Foundation Postdoctoral Fellowship (D.H.J.).

Author information

Authors and Affiliations

Authors

Contributions

D.H.J., J.E.G., S.J.W., K.A. and S.H. conceived the study. J.E.G., D.H.J., S.J.W. and C.A.C. optimized the sciCUT&Tag protocol on the ICELL8. J.E.G. and D.H.J. designed the experiments and carried them out with the help of C.A.C. D.H.J. and J.E.G. performed the data analysis and generated the figures. S.N.F. provided the human PBMC samples, advised on the implementation of Souporcell for doublet detection and provided helpful discussion. S.S.M. constructed an easy-to-use Nextflow pipeline for running Souporcell. J.E.G., D.H.J., C.A.C., K.A. and S.H. wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Kami Ahmad or Steven Henikoff.

Ethics declarations

Competing interests

S.H. has filed patent applications on related work. The other authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Julia Zeitlinger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Kaya-Okur, H. S. et al. Nat. Commun. 10, 1930 (2019): https://doi.org/10.1038/s41467-019-09982-5

Wu, S. J. et al. Nat. Biotechnol. 39, 819–824 (2021): https://doi.org/10.1038/s41587-021-00865-z

Meers, M. P. et al. Nat. Biotechnol. 41, 708–716 (2023): https://doi.org/10.1038/s41587-022-01522-9

Supplementary information

Supplementary Information

Supplementary Methods and Figs. 1 and 2.

Reporting Summary

Supplementary Table 1

All the barcoded Tn5 s5 and s7 and universal MErev adapter sequences are shown in the first tab, the barcoded i5 and i7 primer sequences in the second tab and the custom primer sequences used for illumine sequencing in the third tab.

Supplementary Table 2

Layout of the 96-well sci-pA–Tn5 plate

Supplementary Table 3

Layout of the 384-well i5 and i7 primer plate for dispensing on the ICell8 instrument

Supplementary Table 4

An example of the input file for the sciCTextract custom software that assigns sequencing reads to sample name prefixes based on the s5 and s7 adapter sequence

Supplementary Table 5

An example of the input file for the sciCTextract custom software that assigns sequencing reads to sample name suffixes based on the i5 and i7 adapter sequence

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janssens, D.H., Greene, J.E., Wu, S.J. et al. Scalable single-cell profiling of chromatin modifications with sciCUT&Tag. Nat Protoc 19, 83–112 (2024). https://doi.org/10.1038/s41596-023-00905-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00905-9

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing