Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Reproducible strategy for excisional skin-wound-healing studies in mice

Abstract

Wound healing is a complex physiological process involving various cell types and signaling pathways. The capability to observe the dynamics of wound repair offers valuable insights into the effects of genetic modifications, pharmaceutical interventions or other experimental manipulations on the skin-repair process. Here, we provide a comprehensive protocol for a full-thickness, excisional skin-wound-healing assay in mice, which can easily be performed by any scientist who has received an animal welfare course certificate and can be completed within ~3 h, depending on the number of animals. Crucially, we highlight the importance of considering key aspects of the assay that can dramatically contribute to the reliability and reproducibility of these experiments. We thoroughly discuss the experimental design, necessary preparations, wounding technique and analysis. In addition, we discuss the use of lineage-tracing techniques to monitor cell migration, differentiation and the contribution of different cell populations to the repair process. Overall, we explore key aspects of the skin-wound-healing assay, supplying a detailed procedure and guidelines essential for decreasing variability and obtaining reliable and reproducible results.

Key points

  • The protocol provides an accurate method for performing a full-thickness excisional wound-healing (WH) assay in murine dorsal skin with high reproducibility.

  • This method can improve WH studies by decreasing deviations and improving reliability, eventually reducing the number of animals required per experiment. In addition, the assay can be combined with lineage-tracing experiments to investigate the contribution of different cell populations to the repair process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classical models of skin wound healing.
Fig. 2: Schematic outlines of the bulge-oriented WH assay.
Fig. 3: Detailed stages of the WH experiment.
Fig. 4: Visualization of lineage-traced scarred epidermal whole mounts.

Similar content being viewed by others

Data availability

All raw data, including measurements for Supplementary Fig. 1b and original images for Fig. 4, are available in Supplementary Data 2. Source data are provided with this paper.

References

  1. Koren, E. et al. Thy1 marks a distinct population of slow-cycling stem cells in the mouse epidermis. Nat. Commun. 13, 4628 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aragona, M. et al. Defining stem cell dynamics and migration during wound healing in mouse skin epidermis. Nat. Commun. 8, 14684 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lisse, T. S., Sharma, M., Vishlaghi, N., Pullagura, S. R. & Braun, R. E. GDNF promotes hair formation and cutaneous wound healing by targeting bulge stem cells. NPJ Regen. Med. 5, 13 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dekoninck, S. & Blanpain, C. Stem cell dynamics, migration and plasticity during wound healing. Nat. Cell Biol. 21, 18–24 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chou, W. C. et al. Direct migration of follicular melanocyte stem cells to the epidermis after wounding or UVB irradiation is dependent on Mc1r signaling. Nat. Med. 19, 924–929 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Page, M. E., Lombard, P., Ng, F., Göttgens, B. & Jensen, K. B. The epidermis comprises autonomous compartments maintained by distinct stem cell populations. Cell Stem Cell 13, 471–482 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Donati, G. et al. Wounding induces dedifferentiation of epidermal Gata6+ cells and acquisition of stem cell properties. Nat. Cell Biol. 19, 603–613 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lu, C. P. et al. Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair. Cell 150, 136–150 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shook, B. A. et al. Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair. Science 362, eaar2971 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Plikus, M. V. et al. Regeneration of fat cells from myofibroblasts during wound healing. Science 355, 748–752 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shook, B. A. et al. Dermal adipocyte lipolysis and myofibroblast conversion are required for efficient skin repair. Cell Stem Cell 26, 880–895.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McGee, H. M. et al. IL-22 promotes fibroblast-mediated wound repair in the skin. J. Invest. Dermatol. 133, 1321–1329 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Shook, B., Xiao, E., Kumamoto, Y., Iwasaki, A. & Horsley, V. CD301b+ macrophages are essential for effective skin wound healing. J. Invest. Dermatol. 136, 1885–1891 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Toulon, A. et al. A role for human skin-resident T cells in wound healing. J. Exp. Med. 206, 743–750 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Keyes, B. E. et al. Impaired epidermal to dendritic T cell signaling slows wound repair in aged skin. Cell 167, 1323–1338.e14 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lim, C. H. et al. Hedgehog stimulates hair follicle neogenesis by creating inductive dermis during murine skin wound healing. Nat. Commun. 9, 4903 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wietecha, M. S. et al. Activin-mediated alterations of the fibroblast transcriptome and matrisome control the biomechanical properties of skin wounds. Nat. Commun. 11, 2604 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rognoni, E. et al. Inhibition of β-catenin signalling in dermal fibroblasts enhances hair follicle regeneration during wound healing. Development 143, 2522–2535 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hiebert, P. et al. Nrf2-mediated fibroblast reprogramming drives cellular senescence by targeting the matrisome. Dev. Cell 46, 145–161.e10 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Naik, S. et al. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 550, 475–480 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gonzales, K. A. U. et al. Stem cells expand potency and alter tissue fitness by accumulating diverse epigenetic memories. Science 374, eabh2444 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, X. et al. IL-17R–EGFR axis links wound healing to tumorigenesis in Lrig1+ stem cells. J. Exp. Med. 216, 195–214 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weber, C. et al. Macrophage infiltration and alternative activation during wound healing promote MEK1-induced skin carcinogenesis. Cancer Res. 76, 805–817 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ge, Y. et al. Stem cell lineage infidelity drives wound repair and cancer. Cell 169, 636–650.e14 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lintel, H. et al. Transdermal deferoxamine administration improves excisional wound healing in chronically irradiated murine skin. J. Transl. Med. 4, 1–13 (2022).

    Google Scholar 

  26. Ben-Yehuda Greenwald, M. et al. Topical wound treatment with a nitric oxide-releasing PDE5 inhibitor formulation enhances blood perfusion and promotes healing in mice. Pharmaceutics 14, 2358 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ankawa, R. et al. Apoptotic cells represent a dynamic stem cell niche governing proliferation and tissue regeneration. Dev. Cell 56, 1900–1916.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Fuchs, Y. et al. Sept4/ARTS regulates stem cell apoptosis and skin regeneration. Science 341, 286–289 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sedov, E. et al. THY1-mediated mechanisms converge to drive YAP activation in skin homeostasis and repair. Nat. Cell Biol. 24, 1049–1063 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Rossiter, H. et al. Loss of vascular endothelial growth factor A activity in murine epidermal keratinocytes delays wound healing and inhibits tumor formation. Cancer Res. 64, 3508–3516 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Nguyen, H. et al. Tcf3 and Tcf4 are essential for long-term homeostasis of skin epithelia. Nat. Genet. 41, 1068–1075 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jirkof, P., Cesarovic, N., Rettich, A., Fleischmann, T. & Arras, M. Individual housing of female mice: influence on postsurgical behaviour and recovery. Lab. Anim. 46, 325–334 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Pastar, I. et al. Epithelialization in wound healing: a comprehensive review. Adv. Wound Care 3, 445–464 (2014).

    Article  Google Scholar 

  34. Foster, D. S. et al. Integrated spatial multiomics reveals fibroblast fate during tissue repair. Proc. Natl Acad. Sci. USA 118, e2110025118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Talbott, H. E., Mascharak, S., Griffin, M., Wan, D. C. & Longaker, M. T. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell 29, 1161–1180 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, L., Mirza, R., Kwon, Y., DiPietro, L. A. & Koh, T. J. The murine excisional wound model: contraction revisited. Wound Repair Regen. 23, 874–877 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hinz, B. Formation and function of the myofibroblast during tissue repair. J. Invest. Dermatol. 127, 526–537 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Darby, I. A., Laverdet, B., Bonté, F. & Desmoulière, A. Fibroblasts and myofibroblasts in wound healing. Clin. Cosmet. Investig. Dermatol. 7, 301–311 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. Mascharak, S. et al. Multi-omic analysis reveals divergent molecular events in scarring and regenerative wound healing. Cell Stem Cell 29, 315–327.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kurita, M. et al. In vivo reprogramming of wound-resident cells generates skin epithelial tissue. Nature 561, 243–247 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mascharak, S. et al. Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring. Science 372, eaba2374 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lumbers, M. Understanding and addressing dryness during wound healing. Br. J. Community Nurs. 24, S11–S14 (2019).

    Article  Google Scholar 

  43. Davidson, J. M., Yu, F. & Opalenik, S. R. Splinting strategies to overcome confounding wound contraction in experimental animal models. Adv. Wound Care 2, 142–148 (2013).

    Article  Google Scholar 

  44. Wang, X., Ge, J., Tredget, E. E. & Wu, Y. The mouse excisional wound splinting model, including applications for stem cell transplantation. Nat. Protoc. 8, 302–309 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Ganguli-Indra, G. Protocol for cutaneous wound healing assay in a murine model. in Stem Cells and Tissue Repair: Methods and Protocols (ed. Kioussi, C.) 151–159 (Humana Press, 2014).

  46. Falanga, V. et al. Full-thickness wounding of the mouse tail as a model for delayed wound healing: accelerated wound closure in Smad3 knock-out mice. Wound Repair Regen. 12, 320–326 (2004).

    Article  PubMed  Google Scholar 

  47. Gurtner, G. C., Wong, V. W., Sorkin, M., Glotzbach, J. P. & Longaker, M. T. Surgical approaches to create murine models of human wound healing. J. Biomed. Biotechnol. 2011, 969618 (2011).

    PubMed  Google Scholar 

  48. Landén, N. X., Li, D. & Ståhle, M. Transition from inflammation to proliferation: a critical step during wound healing. Cell. Mol. Life Sci. 73, 3861–3885 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Galiano, R. D., Michaels, J. V, Dobryansky, M., Levine, J. P. & Gurtner, G. C. Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regen. 12, 485–492 (2004).

    Article  PubMed  Google Scholar 

  50. Dabiri, G., Damstetter, E. & Phillips, T. Choosing a wound dressing based on common wound characteristics. Adv. Wound Care 5, 32–41 (2016).

    Article  Google Scholar 

  51. Jones, V., Grey, J. E. & Harding, K. G. Wound dressings. BMJ 332, 777–780 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Baranoski, S. & Ayello, E. A. Wound dressings: an evolving art and science. Adv. Skin. Wound Care 25, 87–92 (2012).

    Article  PubMed  Google Scholar 

  53. Winter, G. D. Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature 193, 293–294 (1962).

    Article  CAS  PubMed  Google Scholar 

  54. Charan, J. & Kantharia, N. How to calculate sample size in animal studies? J. Pharmacol. Pharmacother. 4, 303–306 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Festing, M. F. W. & Altman, D. G. Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J. 43, 244–257 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Jaks, V. et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat. Genet. 40, 1291–1299 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Ansell, D. M., Kloepper, J. E., Thomason, H. A., Paus, R. & Hardman, M. J. Exploring the “hair growth–wound healing connection”: anagen phase promotes wound re-epithelialization. J. Invest. Dermatol. 131, 518–528 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Müller-Röver, S. et al. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J. Invest. Dermatol. 117, 3–15 (2001).

    Article  PubMed  Google Scholar 

  59. Potten, C. S. Some observations on the post-plucking depression in tritiated thymidine utilization in mouse skin and some tentative cell kinetic determinations. J. Invest. Dermatol. 58, 180–185 (1972).

    Article  CAS  PubMed  Google Scholar 

  60. Chen, C. C. et al. Organ-level quorum sensing directs regeneration in hair stem cell populations. Cell 161, 277–290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Silver, A.F. & Chase, H. B. Early anagen initiated by plucking compared with early spontaneous anagen. In Advances in Biology of Skin. Vol. 9 265–286 (Pergamon Press, 1967).

  62. Stojadinovic, O., Ito, M. & Tomic-Canic, M. Hair cycling and wound healing: to pluck or not to pluck? J. Invest. Dermatol. 131, 292–294 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, B. et al. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature 577, 676–681 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Guarnieri, M. et al. Safety and efficacy of buprenorphine for analgesia in laboratory mice and rats. Lab Anim. (NY). 41, 337–343 (2012).

    Article  PubMed  Google Scholar 

  65. Bravo, L., Mico, J. A. & Berrocoso, E. Discovery and development of tramadol for the treatment of pain. Expert Opin. Drug Discov. 12, 1281–1291 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Clark, T. S., Clark, D. D. & Hoyt, R. F. Pharmacokinetic comparison of sustained-release and standard buprenorphine in mice. J. Am. Assoc. Lab. Anim. Sci. 53, 387–391 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Van Loo, P. L., Mol, J. A., Koolhaas, J. M., Van Zutphen, B. F. & Baumans, V. Modulation of aggression in male mice: influence of group size and cage size. Physiol. Behav. 72, 675–683 (2001).

    Article  PubMed  Google Scholar 

  68. Glasper, E. R. & DeVries, A. C. Social structure influences effects of pair-housing on wound healing. Brain Behav. Immun. 19, 61–68 (2005).

    Article  PubMed  Google Scholar 

  69. Pyter, L. M. et al. Contrasting mechanisms by which social isolation and restraint impair healing in male mice. Stress 17, 256–265 (2014).

    Article  PubMed  Google Scholar 

  70. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Nagy, A. Cre recombinase: the universal reagent for genome tailoring. Genesis 26, 99–109 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Vasioukhin, V., Degenstein, L., Wise, B. & Fuchs, E. The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc. Natl Acad. Sci. USA 96, 8551–8556 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jahn, H. M. et al. Refined protocols of tamoxifen injection for inducible DNA recombination in mouse astroglia. Sci. Rep. 8, 5913 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Horng, H. C. et al. Estrogen effects on wound healing. Int. J. Mol. Sci. 18, 1–14 (2017).

    Article  Google Scholar 

  76. Irrera, N. et al. Dietary management of skin health: the role of genistein. Nutrients 9, 1–10 (2017).

    Article  Google Scholar 

  77. Kellendonk, C. et al. Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res. 24, 1404–1411 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Berton, T. R. et al. Characterization of an inducible, epidermal-specific knockout system: differential expression of lacZ in different Cre reporter mouse strains. Genesis 26, 160–161 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Morris, R. J. et al. Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol. 22, 411–417 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. He, F. & Soriano, P. Sox10ERT2CreERT2 mice enable tracing of distinct neural crest cell populations. Dev. Dyn. 244, 1394–1403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, X. et al. Macrophages induce AKT/β-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF. Nat. Commun. 8, 14091 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ruzankina, Y. et al. Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 1, 113–126 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 1–8 (2001).

    Article  Google Scholar 

  85. Arras, M., Autenried, P., Rettich, A., Spaeni, D. & Rülicke, T. Optimization of intraperitoneal injection anesthesia in mice: drugs, dosages, adverse effects, and anesthesia depth. Comp. Med. 51, 443–456 (2001).

    CAS  PubMed  Google Scholar 

  86. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Ankawa, R. & Fuchs, Y. May the best wound WIHN: the hallmarks of wound-induced hair neogenesis. Curr. Opin. Genet. Dev. 72, 53–60 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Driskell, R. R. et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504, 277–281 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank current and former members of the Fuchs group for their insights and experience. We thank M. Yosopuva, R. Ankawa and N. Goldberger, for their technical assistance; V. Zlobin and Y. Nissan for animal house support; and N. Dahan and Y. Lupu-haber for insights regarding microscopy. We extend special thanks to D. Kulinsky and A. Hezi-Yamit for valuable input. Y.F. is supported by the EMBO Young Investigator program.

Author information

Authors and Affiliations

Authors

Contributions

M.Y. and Y.F. designed, analyzed and conceived the project. M.Y. performed imaging. M.Y, I.B. and Y.F. wrote the manuscript.

Corresponding author

Correspondence to Yaron Fuchs.

Ethics declarations

Competing interests

M.Y., I.B. and Y.F. are employees and/or shareholders of Augmanity, a privately funded research institute in Rehovot, Israel. The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Koren, E. et al. Nat. Commun. 13, 4628 (2022): https://doi.org/10.1038/s41467-022-31629-1

Ankawa, R. et al. Dev. Cell 56, 1900–1916.e5 (2021): https://doi.org/10.1016/j.devcel.2021.06.008

Extended data

Extended Data Fig. 1 Whole-mount preparation of a sealed wound.

a, HFs in the vicinity of the wound edge enter the anagen phase, extending to the hypodermis and hindering epidermis-dermis separation. b, Scar tissue (30 d after wound inflection) is scrapped from fat and immersed entirely in EDTA to weaken the epidermal-dermal connection. c, Under a stereomicroscope, using two pairs of forceps, the epidermis is gently separated from the dermis. d, The dermis is initially fixed with a low volume of fixative to prevent the tissue from folding.

Extended Data Fig. 2 Calculating the wound area by using the Fiji (Image J) Software.

a–c, Open high-resolution scan in Fiji (a) and select the ‘Make Binary’ command to transform the image to white & black (b and c). The red square in c defines the selected zoomed-in area in D. d–g, Zoom-in to detect small gaps in the outlines (the purple-dashed square marks the gapped area). Use the hand-free selection tool (d, blue square) and the ‘Clear’ command to fill the gaps. Use the ‘Wand’ tool (g, blue square) to select the area you wish to calculate and press ‘M’ on your keyboard to perform the measurements. The values will be shown in a pop-up window and can be copied directly to an Excel file.

Supplementary information

Supplementary Information

Supplementary Protocols 1–3, Discussion and Figs. 1 and 2

Supplementary Data 1

Theoretical data analysis template

Supplementary Data 2

Source data for Supplementary Fig. 1B (graph)

Source data

Source Data Fig. 4

Original images

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yampolsky, M., Bachelet, I. & Fuchs, Y. Reproducible strategy for excisional skin-wound-healing studies in mice. Nat Protoc 19, 184–206 (2024). https://doi.org/10.1038/s41596-023-00899-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00899-4

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing