Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Precise surface functionalization of PLGA particles for human T cell modulation

Abstract

The biofunctionalization of synthetic materials has extensive utility for biomedical applications, but approaches to bioconjugation typically show insufficient efficiency and controllability. We recently developed an approach by building synthetic DNA scaffolds on biomaterial surfaces that enables the precise control of cargo density and ratio, thus improving the assembly and organization of functional cargos. We used this approach to show that the modulation and phenotypic adaptation of immune cells can be regulated using our precisely functionalized biomaterials. Here, we describe the three key procedures, including the fabrication of polymeric particles engrafted with short DNA scaffolds, the attachment of functional cargos with complementary DNA strands, and the surface assembly control and quantification. We also explain the critical checkpoints needed to ensure the overall quality and expected characteristics of the biological product. We provide additional experimental design considerations for modifying the approach by varying the material composition, size or cargo types. As an example, we cover the use of the protocol for human primary T cell activation and for the identification of parameters that affect ex vivo T cell manufacturing. The protocol requires users with diverse expertise ranging from synthetic materials to bioconjugation chemistry to immunology. The fabrication procedures and validation assays to design high-fidelity DNA-scaffolded biomaterials typically require 8 d.

Key points

  • The protocol describes the fabrication of DNA scaffolds, the bioconjugation of biomolecules with complementary DNAs, conjugate assembly onto the DNA scaffolds and their immunomodulatory effect on primary human T cells in culture.

  • Steric hindrance typically limits the use of orthogonal chemistry and covalent surface attachment strategies, whereas this DNA hybridization-based approach maintains control over the loading of each biomolecule species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the fabrication protocol for precision ICEps.
Fig. 2: Quality control of PLGA particles with dense DNA scaffolds.
Fig. 3: Protocol and quality checkpoints of Ab–DNA conjugation and purification.
Fig. 4: Density and ratiometric control of cargos co-loaded onto particle surfaces.
Fig. 5: ICEp activation of human T cells and their phenotypic characterization.

Similar content being viewed by others

Data availability

Any raw data that supports the plots within this paper are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dellacherie, M. O., Seo, B. R. & Mooney, D. J. Macroscale biomaterials strategies for local immunomodulation. Nat. Rev. Mater. 4, 379–397 (2019).

    Article  Google Scholar 

  4. Wang, H. & Mooney, D. J. Biomaterial-assisted targeted modulation of immune cells in cancer treatment. Nat. Mater. 17, 761–772 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tan, S., Li, D. & Zhu, X. Cancer immunotherapy: pros, cons and beyond. Biomed. Pharmacother. 124, 109821 (2020).

    Article  PubMed  Google Scholar 

  7. Sterner, R. C. & Sterner, R. M. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 11, 1–11 (2021).

    Article  Google Scholar 

  8. Romano, M., Fanelli, G., Albany, C. J., Giganti, G. & Lombardi, G. Past, present, and future of regulatory T cell therapy in transplantation and autoimmunity. Front. Immunol. 10, 43 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ferreira, L. M. R., Muller, Y. D., Bluestone, J. A. & Tang, Q. Next-generation regulatory T cell therapy. Nat. Rev. Drug Discov. 18, 749–769 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Herold, K. C. et al. An anti-CD3 antibody, teplizumab, in relatives at risk for type 1 diabetes. N. Engl. J. Med. 381, 603–613 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Balcerek, J. et al. Polyclonal regulatory T cell manufacturing under cGMP: a decade of experience. Front. Immunol. 12, 744763 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dong, S. et al. The effect of low-dose IL-2 and Treg adoptive cell therapy in patients with type 1 diabetes. JCI Insight 6, e147474 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lin, M. J. et al. Cancer vaccines: the next immunotherapy frontier. Nat. Cancer 3, 911–926 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Larson, R. C. & Maus, M. V. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat. Rev. Cancer 21, 145–161 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tang, L. et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 36, 707–716 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bonati, L. & Tang, L. Cytokine engineering for targeted cancer immunotherapy. Curr. Opin. Chem. Biol. 62, 43–52 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Hwang, J.-R., Byeon, Y., Kim, D. & Park, S.-G. Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp. Mol. Med. 52, 750–761 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Veerman, R. E., Güçlüler Akpinar, G., Eldh, M. & Gabrielsson, S. Immune cell-derived extracellular vesicles—functions and therapeutic applications. Trends Mol. Med. 25, 382–394 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Chang, J. T., Wherry, E. J. & Goldrath, A. W. Molecular regulation of effector and memory T cell differentiation. Nat. Immunol. 15, 1104–1115 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang, X. et al. DNA scaffolds enable efficient and tunable functionalization of biomaterials for immune cell modulation. Nat. Nanotechnol. 16, 214–223 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Majedi, F. S. et al. Augmentation of T-cell activation by oscillatory forces and engineered antigen-presenting cells. Nano Lett. 19, 6945–6954 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cheung, A. S., Zhang, D. K. Y., Koshy, S. T. & Mooney, D. J. Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cells. Nat. Biotechnol. 36, 160–169 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rhodes, K. R., Meyer, R. A., Wang, J., Tzeng, S. Y. & Green, J. J. Biomimetic tolerogenic artificial antigen presenting cells for regulatory T cell induction. Acta Biomater. 112, 136–148 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim, J. V., Latouche, J.-B., Rivière, I. & Sadelain, M. The ABCs of artificial antigen presentation. Nat. Biotechnol. 22, 403–410 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Boozer, C., Ladd, J., Chen, S. & Jiang, S. DNA-directed protein immobilization for simultaneous detection of multiple analytes by surface plasmon resonance biosensor. Anal. Chem. 78, 1515–1519 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, Y. & Yu, J. Oriented immobilization of proteins on solid supports for use in biosensors and biochips: a review. Microchim. Acta 183, 1–19 (2016).

    Article  CAS  Google Scholar 

  27. Bilal, M., Asgher, M., Cheng, H., Yan, Y. & Iqbal, H. M. N. Multi-point enzyme immobilization, surface chemistry, and novel platforms: a paradigm shift in biocatalyst design. Crit. Rev. Biotechnol. 39, 202–219 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Smith, M. R., Tolbert, S. V. & Wen, F. Protein-scaffold directed nanoscale assembly of T cell ligands: Artificial antigen presentation with defined valency, density, and ratio. ACS Synth. Biol. 7, 1629–1639 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, X. & Rivière, I. Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol. Ther. Oncolytics 3, 16015 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Arcangeli, S. et al. CAR T cell manufacturing from naive/stem memory T lymphocytes enhances antitumor responses while curtailing cytokine release syndrome. J. Clin. Invest. 132, e150807 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. López-Cantillo, G., Urueña, C., Camacho, B. A. & Ramírez-Segura, C. CAR-T cell performance: how to improve their persistence? Front. Immunol. 13, 878209 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Arcangeli, S. et al. Next-generation manufacturing protocols enriching TSCM CAR T cells can overcome disease-specific T cell defects in cancer patients. Front. Immunol. 11, 1217 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Elmowafy, E. M., Tiboni, M. & Soliman, M. E. Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. J. Pharm. Investig. 49, 347–380 (2019).

    Article  CAS  Google Scholar 

  34. Roybal, K. T. et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164, 770–779 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maynard, S. A., Winter, C. W., Cunnane, E. M. & Stevens, M. M. Advancing cell-instructive biomaterials through increased understanding of cell receptor spacing and material surface functionalization. Regen. Eng. Transl. Med. 7, 533–547 (2021).

    Article  Google Scholar 

  36. Zhong, J. X., Raghavan, P. & Desai, T. A. Harnessing biomaterials for immunomodulatory-driven tissue engineering. Regen. Eng. Transl. Med. https://doi.org/10.1007/s40883-022-00279-6 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mertgen, A.-S. et al. Multifunctional biomaterials: combining material modification strategies for engineering of cell-contacting surfaces. ACS Appl. Mater. Interfaces 12, 21342–21367 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Bao, G., Mitragotri, S. & Tong, S. Multifunctional nanoparticles for drug delivery and molecular imaging. Annu. Rev. Biomed. Eng. 15, 253–282 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Saminathan, A., Zajac, M., Anees, P. & Krishnan, Y. Organelle-level precision with next-generation targeting technologies. Nat. Rev. Mater. 7, 355–371 (2022).

    Article  Google Scholar 

  40. Lagreca, E. et al. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog. Biomater. 9, 153–174 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu, W., Liu, R., Zhou, Y. & Gao, H. Size-tunable strategies for a tumor targeted drug delivery system. ACS Cent. Sci. 6, 100–116 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pradal, J. et al. Effect of particle size on the biodistribution of nano- and microparticles following intra-articular injection in mice. Int. J. Pharm. 498, 119–129 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Adakkattil, R., Thakur, K. & Rai, V. Reactivity and selectivity principles in native protein bioconjugation. Chem. Rec. 21, 1941–1956 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Trads, J. B., Tørring, T. & Gothelf, K. V. Site-selective conjugation of native proteins with DNA. Acc. Chem. Res. 50, 1367–1374 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Saha, B., Songe, P., Evers, T. H. & Prins, M. W. J. The influence of covalent immobilization conditions on antibody accessibility on nanoparticles. Analyst 142, 4247–4256 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Zamecnik, C. R., Lowe, M. M., Patterson, D. M., Rosenblum, M. D. & Desai, T. A. Injectable polymeric cytokine-binding nanowires are effective tissue-specific immunomodulators. ACS Nano 11, 11433–11440 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Makaraviciute, A., Jackson, C. D., Millner, P. A. & Ramanaviciene, A. Considerations in producing preferentially reduced half-antibody fragments. J. Immunol. Methods 429, 50–56 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Sapsford, K. E. et al. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem. Rev. 113, 1904–2074 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Khandare, J. & Minko, T. Polymer–drug conjugates: progress in polymeric prodrugs. Prog. Polym. Sci. 31, 359–397 (2006).

    Article  CAS  Google Scholar 

  50. Martínez-Jothar, L. et al. Insights into maleimide-thiol conjugation chemistry: conditions for efficient surface functionalization of nanoparticles for receptor targeting. J. Control. Release 282, 101–109 (2018).

    Article  PubMed  Google Scholar 

  51. Chiodi, E., Marn, A. M., Geib, M. T. & Ünlü, M. S. The role of surface chemistry in the efficacy of protein and DNA microarrays for label-free detection: an overview. Polymers 13, 1026 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pei, X. et al. Putting precision and elegance in enzyme immobilisation with bio-orthogonal chemistry. Chem. Soc. Rev. 51, 7281–7304 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Wasserberg, D., Cabanas-Danés, J., Subramaniam, V., Huskens, J. & Jonkheijm, P. Orthogonal supramolecular protein assembly on patterned bifunctional surfaces. Chem. Commun. 54, 1615–1618 (2018).

    Article  CAS  Google Scholar 

  54. Meder, F., Kaur, S., Treccani, L. & Rezwan, K. Controlling mixed-protein adsorption layers on colloidal alumina particles by tailoring carboxyl and hydroxyl surface group densities. Langmuir 29, 12502–12510 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Wongrakpanich, A., Khunkitchai, N., Achayawat, Y. & Suksiriworapong, J. Ketorolac-loaded PLGA-/PLA-based microparticles stabilized by hyaluronic acid: effects of formulation composition and emulsification technique on particle characteristics and drug release behaviors. Polymers 15, 266 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Makadia, H. K. & Siegel, S. J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3, 1377–1397 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Vivek, K., Harivardhan Reddy, L. & Murthy, R. S. R. Comparative study of some biodegradable polymers on the entrapment efficiency and release behavior of etoposide from microspheres. Pharm. Dev. Technol. 12, 79–88 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Ghasemiyeh, P. & Mohammadi-Samani, S. Polymers blending as release modulating tool in drug delivery. Front. Mater. 8, 752813 (2021).

    Article  Google Scholar 

  59. Fu, J. et al. DNA-scaffolded proximity assembly and confinement of multienzyme reactions. Top. Curr. Chem. 378, 38 (2020).

    Article  CAS  Google Scholar 

  60. Wiener, J., Kokotek, D., Rosowski, S., Lickert, H. & Meier, M. Preparation of single- and double-oligonucleotide antibody conjugates and their application for protein analytics. Sci. Rep. 10, 1457 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. van der Sleen, L. M. & Tych, K. M. Bioconjugation strategies for connecting proteins to DNA-linkers for single-molecule force-based experiments. Nanomaterials 11, 2424 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  62. von Witting, E., Hober, S. & Kanje, S. Affinity-based methods for site-specific conjugation of antibodies. Bioconjugate Chem. 32, 1515–1524 (2021).

    Article  Google Scholar 

  63. Manning, M. C., Chou, D. K., Murphy, B. M., Payne, R. W. & Katayama, D. S. Stability of protein pharmaceuticals: an update. Pharm. Res. 27, 544–575 (2010).

    Article  PubMed  Google Scholar 

  64. Frokjaer, S. & Otzen, D. E. Protein drug stability: a formulation challenge. Nat. Rev. Drug Discov. 4, 298–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Wang, W. Protein aggregation and its inhibition in biopharmaceutics. Int. J. Pharm. 289, 1–30 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Themeli, M., Rivière, I. & Sadelain, M. New cell sources for T cell engineering and adoptive immunotherapy. Cell Stem Cell 16, 357–366 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stock, S., Schmitt, M. & Sellner, L. Optimizing manufacturing protocols of chimeric antigen receptor T cells for improved anticancer immunotherapy. Int. J. Mol. Sci. 20, 6223 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Eskandari, S. K. et al. Regulatory T cells engineered with TCR signaling–responsive IL-2 nanogels suppress alloimmunity in sites of antigen encounter. Sci. Transl. Med. 12, eaaw4744 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ghaffari, S. et al. Optimizing interleukin-2 concentration, seeding density and bead-to-cell ratio of T-cell expansion for adoptive immunotherapy. BMC Immunol. 22, 43 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, Y. et al. Phase transitions in human IgG solutions. J. Chem. Phys. 139, 121904 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wang, S. S., Yan, Y. S. & Ho, K. US FDA-approved therapeutic antibodies with high-concentration formulation: summaries and perspectives. Antib. Ther. 4, 262–272 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Vincent, M. P., Navidzadeh, J. O., Bobbala, S. & Scott, E. A. Leveraging self-assembled nanobiomaterials for improved cancer immunotherapy. Cancer Cell 40, 255–276 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Danaei, M. et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10, 57 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Fass, D. & Thorpe, C. Chemistry and enzymology of disulfide cross-linking in proteins. Chem. Rev. 118, 1169–1198 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Delcassian, D., Sattler, S. & Dunlop, I. E. T cell immunoengineering with advanced biomaterials. Integr. Biol. 9, 211–222 (2017).

    Article  CAS  Google Scholar 

  77. Wang, C., Sun, W., Ye, Y., Bomba, H. N. & Gu, Z. Bioengineering of artificial antigen presenting cells and lymphoid organs. Theranostics 7, 3504–3516 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Si, X., Xiao, L., Brown, C. E. & Wang, D. Preclinical evaluation of CAR T cell function: in vitro and in vivo models. Int. J. Mol. Sci. 23, 3154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Z. Gartner and B. Moser for relevant DNA synthesis, S. Douglas and K. Shen for gel imaging, W. Lim for sonication equipment, the University of California, San Francisco (UCSF) Nikon Imaging center for confocal microscopy, and V. Nguyen and the UCSF Flow Cytometry Core (RRID: SCR_018206) for their flow cytometry expertise and equipment use—funded in part by the Diabetes Research Center via the National Institutes of Health (NIH) grant P30 DK063720. P.H. was supported by the UCSF Medical Scientist Training Program training grant T32GM141323 via the National Institute of General Medical Sciences (NIGMS). X.H. acknowledges the start-up fund provided by the School of Biomedical Engineering, Science, and Health Systems at Drexel University. This work was also partially funded by the UCSF Diabetes Center Pilot and Feasibility award funded in part by NIH grant P30 DK063720 (P.H., T.D. and Q.T.), NIH grant 1U54CA244438 (T.D.), the Northern California JDRF Center of Excellence 5-COE-2019-860-S-B (Q.T.) and the JDRF grant 2-SRA-2022-1221-S-B (T.D.). We thank E. Ronin and P. Ho for helpful discussion and trainings. We also thank E. Hansen for help with protocol validation and assistance.

Author information

Authors and Affiliations

Authors

Contributions

P.H. and X.H. designed the experiments and drafted the manuscript. P.H. and L.C. contributed to the experiments in Figs. 2–5. Y.C. and Z.H. contributed to the experiments in Fig. 2. P.H. analyzed the data. All authors contributed to the editing of the manuscript.

Corresponding authors

Correspondence to Xiao Huang or Tejal Desai.

Ethics declarations

Competing interests

T.D. and X.H. are inventors of a pending patent related to the technology described within this manuscript (WO2020014270A1). Q.T. is a co-founder, shareholder and scientific advisor of Sonoma Biotherapeutics. P.H., Y.C., Z.H. and L.C. declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Christopher Jewell, Evan Scott and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Huang, X. et al. Nat. Nanotechnol. 16, 214–223 (2021): https://doi.org/10.1038/s41565-020-00813-z

Supplementary information

Reporting Summary

Supplementary Table

Supplementary Table 1. Example reaction template for DNA−PLGA conjugation.

Source data

Source Data Fig. 2

Uncropped urea–PAGE gels for Fig. 2b–d.

Source Data Fig. 3

Uncropped SDS–PAGE gel for Fig. 3b, urea–PAGE gel used for quantification in Fig. 3c and urea–PAGE gel for Fig. 3e.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadley, P., Chen, Y., Cline, L. et al. Precise surface functionalization of PLGA particles for human T cell modulation. Nat Protoc 18, 3289–3321 (2023). https://doi.org/10.1038/s41596-023-00887-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00887-8

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research