Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Exposure protocol for ecotoxicity testing of microplastics and nanoplastics

Abstract

Despite the increasing concern about the harmful effects of micro- and nanoplastics (MNPs), there are no harmonized guidelines or protocols yet available for MNP ecotoxicity testing. Current ecotoxicity studies often use commercial spherical particles as models for MNPs, but in nature, MNPs occur in variable shapes, sizes and chemical compositions. Moreover, protocols developed for chemicals that dissolve or form stable dispersions are currently used for assessing the ecotoxicity of MNPs. Plastic particles, however, do not dissolve and also show dynamic behavior in the exposure medium, depending on, for example, MNP physicochemical properties and the medium’s conditions such as pH and ionic strength. Here we describe an exposure protocol that considers the particle-specific properties of MNPs and their dynamic behavior in exposure systems. Procedure 1 describes the top-down production of more realistic MNPs as representative of MNPs in nature and particle characterization (e.g., using thermal extraction desorption-gas chromatography/mass spectrometry). Then, we describe exposure system development for short- and long-term toxicity tests for soil (Procedure 2) and aquatic (Procedure 3) organisms. Procedures 2 and 3 explain how to modify existing ecotoxicity guidelines for chemicals to target testing MNPs in selected exposure systems. We show some examples that were used to develop the protocol to test, for example, MNP toxicity in marine rotifers, freshwater mussels, daphnids and earthworms. The present protocol takes between 24 h and 2 months, depending on the test of interest and can be applied by students, academics, environmental risk assessors and industries.

Key points

  • In nature, micro- and nanoplastics (MNPs) occur in various shapes, sizes and chemical compositions. Each of these properties can affect both their dynamic behavior and their toxicology and should be considered when performing ecotoxicology experiments to assess their risk.

  • Here, MNPs are generated from plastic waste by using either a ball or centrifugal mill. Their physicochemical properties are measured. Ecotoxicology experiments in soil and aquatic systems are described.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An overview of the procedures.
Fig. 2: A comprehensive workflow.
Fig. 3: Ion chromatogram.
Fig. 4: Size-dependent toxicity of MNPs.
Fig. 5: Size-dependent toxicity of MNPs on ROS and oxidative signaling.
Fig. 6: Testing homogeneity in MNP distribution in soil.
Fig. 7: Nanoplastic uptake by plants.

Similar content being viewed by others

Data availability

All the data that support the plots within this paper have been previously published21,22,50,51,52.

References

  1. Persson, L. et al. Outside the safe operating space of the planetary boundary for novel entities. Environ. Sci. Technol. 56, 1510–1521 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. MacLeod, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. The global threat from plastic pollution. Science 373, 61–65 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Gigault, J. et al. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat. Nanotechnol. 16, 501–507 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Abdolahpur Monikh, F. et al. Can current regulations account for intentionally produced nanoplastics? Environ. Sci. Technol. 56, 3836–3839 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alimi, O. S. et al. Weathering pathways and protocols for environmentally relevant microplastics and nanoplastics: what are we missing? J. Hazard. Mater. 423, 126955 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. A Scientific Perspective on Microplastics in Nature and Society. Evidence Review Report (Science Advice for Policy by European Academies, 2019); https://sapea.info/topic/microplastics/

  7. Rochman, C. M. et al. Policy: classify plastic waste as hazardous. Nature 494, 169–170 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Browne, M. A., Niven, S. J., Galloway, T. S., Rowland, S. J. & Thompson, R. C. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Curr. Biol. 23, 2388–2392 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, W., Ge, J. & Yu, X. Bioavailability and toxicity of microplastics to fish species: a review. Ecotoxicol. Environ. Saf. 189, 109913 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Jovanović, B. Ingestion of microplastics by fish and its potential consequences from a physical perspective. Integr. Environ. Assess. Manag. 13, 510–515 (2017).

    Article  PubMed  Google Scholar 

  11. Huuskonen, H. et al. Do whitefish (Coregonus lavaretus) larvae show adaptive variation in the avoidance of microplastic ingestion? Environ. Pollut. 262, 114353 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Arias-Andres, M., Klümper, U., Rojas-Jimenez, K. & Grossart, H. P. Microplastic pollution increases gene exchange in aquatic ecosystems. Environ. Pollut. 237, 253–261 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Arias-Andres, M., Kettner, M. T., Miki, T. & Grossart, H. P. Microplastics: new substrates for heterotrophic activity contribute to altering organic matter cycles in aquatic ecosystems. Sci. Total Environ. 635, 1152–1159 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Abdolahpur Monikh, F. et al. Chemical composition and particle size influence the toxicity of nanoscale plastic debris and their co-occurring benzo(α)pyrene in the model aquatic organisms Daphnia magna and Danio rerio. NanoImpact 25, 100382 (2022).

    Article  Google Scholar 

  15. El Hadri, H., Gigault, J., Maxit, B., Grassl, B. & Reynaud, S. Nanoplastic from mechanically degraded primary and secondary microplastics for environmental assessments. NanoImpact 17, 100206 (2020).

    Article  Google Scholar 

  16. EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J. 14, 4501 (2016).

  17. Abdolahpur Monikh, F. et al. The analytical quest for sub-micron plastics in biological matrices. Nano Today 41, 101296 (2021).

    Article  CAS  Google Scholar 

  18. Xia, B. et al. Secondary PVC microplastics are more toxic than primary PVC microplastics to Oryzias melastigma embryos. J. Hazard. Mater. 424, 127421 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Yin, K. et al. A comparative review of microplastics and nanoplastics: toxicity hazards on digestive, reproductive and nervous system. Sci. Total Environ. 774, 145758 (2021).

    Article  CAS  Google Scholar 

  20. Abdolahpur Monikh, F. et al. Particle number-based trophic transfer of gold nanomaterials in an aquatic food chain. Nat. Commun. 12, 899 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jeong, C.-B. et al. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus). Environ. Sci. Technol. 50, 8849–8857 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Abdelsaleheen, O. et al. The joint adverse effects of aged nanoscale plastic debris and their co-occurring benzo[α]pyrene in freshwater mussel (Anodonta anatina). Sci. Total Environ. 798, 149196 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Abdolahpur Monikh, F., Chupani, L., Vijver, M. G. & Peijnenburg, W. J. G. M. Parental and trophic transfer of nanoscale plastic debris in an assembled aquatic food chain as a function of particle size. Environ. Pollut. 269, 116066 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Kokalj, A. J., Hartmann, N. B., Drobne, D., Potthoff, A. & Kühnel, D. Quality of nanoplastics and microplastics ecotoxicity studies: refining quality criteria for nanomaterial studies. J. Hazard. Mater. 415, 125751 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Guidance Document on Aquatic and Sediment Toxicological Testing of Nanomaterials (OECD, 2022); https://one.oecd.org/document/env/jm/mono(2020)8/en/pdf

  26. Abdolahpur Monikh, F., Doornhein, N., Romeijn, S., Vijver, M. G. & Peijnenburg, W. J. G. M. Method for extraction of nanoscale plastic debris from soil. Anal. Methods 13, 1576–1583 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Sobhani, Z. et al. Identification and visualisation of microplastics/nanoplastics by Raman imaging (i): down to 100 nm. Water Res. 174, 115658 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Ivleva, N. P. Chemical analysis of microplastics and nanoplastics: challenges, advanced methods, and perspectives. Chem. Rev. 121, 11886–11936 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Altmann, K. et al. Identification of microplastic pathways within a typical European urban wastewater system. Appl. Res. e202200078 (2023).

  30. Horton, A. A. et al. Semi-automated analysis of microplastics in complex wastewater samples. Environ. Pollut. 268, 115841 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Radford, F. et al. Developing a systematic method for extraction of microplastics in soils. Anal. Methods 13, 1695–1705 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Smith, E. J., Davison, W. & Hamilton-Taylor, J. Methods for preparing synthetic freshwaters. Water Res. 36, 1286–1296 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Sugiyama, M., Wu, S., Hosoda, K., Mochizuki, A. & Hori, T. Method for the preparation of artificial lake and river waters. Limnol. Oceanogr. Methods 14, 343–357 (2016).

    Article  Google Scholar 

  34. Tiwari, E. et al. Impact of nanoplastic debris on the stability and transport of metal oxide nanoparticles: role of varying soil solution chemistry. Chemosphere 308, 136091 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Guidance Document on Aquatic Toxicity Testing of Difficult Substances and Mixtures (OECD, 2019); https://www.oecd-ilibrary.org/environment/guidance-document-on-aquatic-toxicity-testing-of-difficult-substances-and-mixtures_0ed2f88e-en

  36. Li, B. et al. Fish ingest microplastics unintentionally. Environ. Sci. Technol. 55, 10471–10479 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Nanninga, G. B. et al. Treatment-level impacts of microplastic exposure may be confounded by variation in individual-level responses in juvenile fish. J. Hazard. Mater. 416, 126059 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Xu, J. et al. Unpalatable plastic: efficient taste discrimination of microplastics in planktonic copepods. Environ. Sci. Technol. 56, 6455–6465 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Ma, C. et al. Application of internal persistent fluorescent fibers in tracking microplastics in vivo processes in aquatic organisms. J. Hazard. Mater. 401, 123336 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Franzellitti, S., Canesi, L., Auguste, M., Wathsala, R. H. G. R. & Fabbri, E. Microplastic exposure and effects in aquatic organisms: a physiological perspective. Environ. Toxicol. Pharmacol. 68, 37–51 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Abdolahpur Monikh, F., Vijver, M. G., Kortet, R., Lynch, I. & Peijnenburg, W. J. G. M. Emerging investigator series: perspectives on toxicokinetics of nanoscale plastic debris in organisms. Environ. Sci. Nano 9, 1566–1577 (2022).

    Article  CAS  Google Scholar 

  42. Cowger, W. et al. Reporting guidelines to increase the reproducibility and comparability of research on microplastics. Appl. Spectrosc. 74, 1066–1077 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Luo, Y. et al. Quantitative tracing of uptake and transport of submicrometre plastics in crop plants using lanthanide chelates as a dual-functional tracer. Nat. Nanotechnol. 17, 424–431 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Abdolahpur Monikh, F. et al. An analytical workflow for dynamic characterization and quantification of metal-bearing nanomaterials in biological matrices. Nat. Protoc. 17, 1926–1952 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Skjolding, L. M., Kruse, S., Sørensen, S. N., Hjorth, R. & Baun, A. A small-scale setup for algal toxicity testing of nanomaterials and other difficult substances. J. Vis. Exp. https://doi.org/10.3791/61209 (2020).

  46. Soil Quality—Effects of Pollutants on Earthworms (Eisenia fetida), Part 2: Determination of Effects on Reproduction, no. 11268-2 (ISO, 1998); https://www.iso.org/standard/20993.html

  47. Hartmann, N. B. et al. The challenges of testing metal and metal oxide nanoparticles in algal bioassays: titanium dioxide and gold nanoparticles as case studies. Nanotoxicology 7, 1082–1094 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Petersen, E. J. et al. Adapting OECD aquatic toxicity tests for use with manufactured nanomaterials: key issues and consensus recommendations. Environ. Sci. Technol. 49, 9532–9547 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Ritz, C., Baty, F., Streibig, J. C. & Gerhard, D. Dose-response analysis using R. PLoS ONE 10, e0146021 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Xu, E. G. et al. Primary and secondary plastic particles exhibit limited acute toxicity but chronic effects on Daphnia magna. Environ. Sci. Technol. 54, 6859–6868 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Abdolahpur Monikh, F. et al. Quantifying the trophic transfer of sub-micron plastics in an assembled food chain. Nano Today 46, 101611 (2022).

    Article  CAS  Google Scholar 

  52. Lahive, E. et al. Earthworms ingest microplastic fibres and nanoplastics with effects on egestion rate and long-term retention. Sci. Total Environ. 807, 151022 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work received financial support from the UEF Water research program, which is jointly funded by the Saastamoinen Foundation, the Wihuri Foundation and the Olvi Foundation. The study was also partially funded by the European Union’s Horizon 2020 research and innovation program, via the projects PLASTICSFATE (Grant Agreement number 965367) and POLYRISK (Grant Agreement number 964766). N.T. acknowledges the Canada Research Chair program and the Killam Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

F.A.M. designed the protocol, and conceptualized and supervised the protocol development. All the co-authors contributed to developing, writing, editing and reviewing the protocol.

Corresponding author

Correspondence to Fazel Abdolahpur Monikh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Win Cowger and Xianfei Huang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Jeong, C.-B. et al. Environ. Sci. Technol. 50, 8849–8857 (2016): https://doi.org/10.1021/acs.est.6b01441

Abdelsaleheen, O. et al. Sci. Total Environ. 798, 149196 (2021): https://doi.org/10.1016/j.scitotenv.2021.149196

Abdolahpur Monikh, F. et al. Nano Today 46, 101611 (2022): https://doi.org/10.1016/j.nantod.2022.101611

Xu, E. G. et al. Environ. Sci. Technol. 54, 6859–6868 (2020): https://doi.org/10.1021/acs.est.0c00245

Altmann, K. et al. Appl. Res. e202200078 (2023): https://doi.org/10.1002/appl.202200078

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdolahpur Monikh, F., Baun, A., Hartmann, N.B. et al. Exposure protocol for ecotoxicity testing of microplastics and nanoplastics. Nat Protoc 18, 3534–3564 (2023). https://doi.org/10.1038/s41596-023-00886-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00886-9

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing