Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Physical dynamic double-network hydrogels as dressings to facilitate tissue repair

Abstract

Double-network hydrogels can be tuned to have high mechanical strength, stability, elasticity and bioresponsive properties, which can be combined to create self-healing, adhesive and antibacterial wound dressings. Compared with single-network hydrogel, double-network hydrogel shows stronger mechanical properties and better stability. In comparison with chemical bonds, the cross-linking in double networks makes them more flexible than single-network hydrogels and capable of self-healing following mechanical damage. Here, we present the stepwise synthesis of physical double-network hydrogels where hydrogen bonds and coordination reactions provide self-healing, pH-responsive, tissue-adhesive, antioxidant, photothermal and antibacterial properties, and can be removed on demand. We then explain how to carry out physical, chemical and biological characterizations of the hydrogels for use as wound dressings, yet the double-network hydrogels could also be used in different applications such as tissue engineering scaffolds, cell/drug delivery systems, hemostatic agents or in flexible wearable devices for monitoring physiological and pathological parameters. We also outline how to use the double-network hydrogels in vivo as wound dressings or hemostatic agents. The synthesis of the ureido–pyrimidinone-modified gelatin, catechol-modified polymers and the hydrogels requires 84 h, 48 h and 1 h, respectively, whereas the in vivo assays require 3.5 weeks. The procedure is suitable for users with expertise in biomedical polymer materials.

Key points

  • The approach combines the use of ureido–pyrimidinone hydrogen bonding with metal-coordination interactions between Fe3+ and catechol groups, thereby generating double physical cross-linked hydrogels.

  • The hydrogels have fast self-healing properties, high mechanical strength and can be tuned to respond to conditions such as temperature, pH and light. When used as dressings, the hydrogels facilitate tissue repair in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagram of PEGSD/GTU hydrogel preparation.
Fig. 2: Characterization of PEGSD and GTU polymers.
Fig. 3: Properties of the physical double-network hydrogel.
Fig. 4: Self-healing behavior of the PEGSD2/GTU5.0 hydrogel.
Fig. 5: Photothermal antibacterial results of the hydrogel.
Fig. 6: Antioxidant and on-demand removal of the hydrogel.
Fig. 7: Tissue adhesive and biocompatibility of the hydrogels.
Fig. 8: Wound healing using physical double-network hydrogel.
Fig. 9: Tissue adhesives using physical double-network hydrogel.
Fig. 10: The hemostatic effect of the hydrogel hemostatic agent in a rabbit ear artery bleeding model.

Similar content being viewed by others

Data availability

The main data discussed in this protocol are available in the supporting primary research paper10.

References

  1. Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature 453, 314–321 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Eming, S. A., Martin, P. & Tomic-Canic, M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci. Transl. Med. 6, 265sr266 (2014).

    Article  Google Scholar 

  3. Chen, J. Y. et al. Antibacterial adhesive self-healing hydrogels to promote diabetic wound healing. Acta Biomater. 146, 119–130 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Yu, R., Yang, Y., He, J., Li, M. & Guo, B. Novel supramolecular self-healing silk fibroin-based hydrogel via host–guest interaction as wound dressing to enhance wound healing. Chem. Eng. J. 417, 128278 (2021).

    Article  CAS  Google Scholar 

  5. Zhang, L. W., Liu, M., Zhang, Y. J. & Pei, R. J. Recent progress of highly adhesive hydrogels as wound dressings. Biomacromolecules 21, 3966–3983 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Blacklow, S. O. et al. Bioinspired mechanically active adhesive dressings to accelerate wound closure. Sci. Adv. 5, eaaw3963 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, M., Liang, Y., Liang, Y., Pan, G. & Guo, B. Injectable stretchable self-healing dual dynamic network hydrogel as adhesive anti-oxidant wound dressing for photothermal clearance of bacteria and promoting wound healing of mrsa infected motion wounds. Chem. Eng. J. 427, 132039 (2022).

    Article  CAS  Google Scholar 

  8. Chen, R. M. et al. A bionic cellulose nanofiber-based nanocage wound dressing for NIR-triggered multiple synergistic therapy of tumors and infected wounds. Biomaterials 281, 121330 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. He, J. H., Shi, M. T., Liang, Y. P. & Guo, B. L. Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds. Chem. Eng. J. 394, 124888 (2020).

    Article  CAS  Google Scholar 

  10. Zhao, X. et al. Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and nir/ph stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing. Adv. Funct. Mater. 30, 1910748 (2020).

    Article  CAS  Google Scholar 

  11. Ding, X. Y. et al. Injectable self-healing hydrogel wound dressing with cysteine-specific on-demand dissolution property based on tandem dynamic covalent bonds. Adv. Funct. Mater. 31, 2011230 (2021).

    Article  CAS  Google Scholar 

  12. Zhang, Y. S. & Khademhosseini, A. Advances in engineering hydrogels. Science 356, eaaf3627 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Qu, J. et al. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials 183, 185–199 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Ghobril, C. & Grinstaff, M. W. The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial. Chem. Soc. Rev. 44, 1820–1835 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Maleki, A. et al. Multifunctional photoactive hydrogels for wound healing acceleration. ACS Nano 15, 18895–18930 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Liang, Y. P., He, J. H. & Guo, B. L. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15, 12687–12722 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Konieczynska, M. D. et al. On-demand dissolution of a dendritic hydrogel-based dressing for second-degree burn wounds through thiol-thioester exchange reaction. Angew. Chem. Int. Ed. 55, 9984–9987 (2016).

    Article  CAS  Google Scholar 

  18. Cheng, H. et al. Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities. Acta Biomater. 124, 219–232 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Zhao, X. et al. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 122, 34–47 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Wu, Y., Wang, L., Guo, B. & Ma, P. X. Injectable biodegradable hydrogels and microgels based on methacrylated poly(ethylene glycol)-co-poly(glycerol sebacate) multi-block copolymers: synthesis, characterization, and cell encapsulation. J. Mater. Chem. B 2, 3674–3685 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Liang, Y. P., Zhao, X., Hu, T. L., Han, Y. & Guo, B. L. Mussel-inspired, antibacterial, conductive, antioxidant, injectable composite hydrogel wound dressing to promote the regeneration of infected skin. J. Colloid Interface Sci. 556, 514–528 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Liang, Y. et al. Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing. Small 15, 1900046 (2019).

    Article  Google Scholar 

  23. Gong, J. P., Katsuyama, Y., Kurokawa, T. & Osada, Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003).

    Article  CAS  Google Scholar 

  24. Huang, X. X. et al. Research progress on double-network hydrogels. Mater. Today Commun. 29, 102757 (2021).

    Article  CAS  Google Scholar 

  25. Chen, K. W. et al. Entanglement-driven adhesion, self-healing, and high stretchability of double-network peg-based hydrogels. ACS Appl. Mater. Inter. 11, 36458–36468 (2019).

    Article  CAS  Google Scholar 

  26. Yang, B. et al. Injectable adhesive self-healing multicross-linked double-network hydrogel facilitates full-thickness skin wound healing. ACS Appl. Mater. Inter. 12, 57782–57797 (2020).

    Article  CAS  Google Scholar 

  27. Ahmadian, Z. et al. A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for ph-responsive wound healing acceleration. Adv. Healthc. Mater. 10, 2001122 (2021).

    Article  CAS  Google Scholar 

  28. Guo, S. et al. Injectable self-healing adhesive chitosan hydrogel with antioxidative, antibacterial, and hemostatic activities for rapid hemostasis and skin wound healing. ACS Appl. Mater. Inter. 14, 34455–34469 (2022).

    Article  CAS  Google Scholar 

  29. Wang, W. D. et al. Injectable self-healing hydrogel via biological environment-adaptive supramolecular assembly for gastric perforation healing. ACS Nano 15, 9913–9923 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Bi, S. C. et al. Construction of physical-crosslink chitosan/pva double-network hydrogel with surface mineralization for bone repair. Carbohyd. Polym. 224, 115176 (2019).

    Article  CAS  Google Scholar 

  31. Zhang, H. J. et al. Tough physical double-network hydrogels based on amphiphilic triblock copolymers. Adv. Mater. 28, 4884–4890 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Harrington, M. J., Masic, A., Holten-Andersen, N., Waite, J. H. & Fratzl, P. Iron-clad fibers: A metal-based biological strategy for hard flexible coatings. Science 328, 216–220 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, X. et al. Dual ionically cross-linked double-network hydrogels with high strength, toughness, swelling resistance, and improved 3d printing processability. ACS Appl. Mater. Inter. 10, 31198–31207 (2018).

    Article  CAS  Google Scholar 

  34. Hu, W. K., Wang, Z. J., Xiao, Y., Zhang, S. M. & Wang, J. L. Advances in crosslinking strategies of biomedical hydrogels. Biomater. Sci. 7, 843–855 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Deng, Z. X., Wang, H., Ma, P. X. & Guo, B. L. Self-healing conductive hydrogels: preparation, properties and applications. Nanoscale 12, 1224–1246 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Sijbesma, R. P. et al. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278, 1601–1604 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Cui, J. X. & del Campo, A. Multivalent h-bonds for self-healing hydrogels. Chem. Commun. 48, 9302–9304 (2012).

    Article  CAS  Google Scholar 

  38. Hou, S., Wang, X. F., Park, S., Jin, X. B. & Ma, P. X. Rapid self-integrating, injectable hydrogel for tissue complex regeneration. Adv. Healthc. Mater. 4, 1491–1495 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jeon, I., Cui, J. X., Illeperuma, W. R. K., Aizenberg, J. & Vlassak, J. J. Extremely stretchable and fast self-healing hydrogels. Adv. Mater. 28, 4678–4683 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Wu, Y. B. et al. Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly. Biomaterials 104, 18–31 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Zhao, J. W., Narita, T. & Creton, C. Dual crosslink hydrogels with metal-ligand coordination bonds: tunable dynamics and mechanics under large deformation. In Self-Healing and Self-Recovering Hydrogels. Advances in Polymer Science, 285 (eds Creton, C. & Okay, O.) (Springer, 2020).

  42. Liang, Y. Q., Li, Z. L., Huang, Y., Yu, R. & Guo, B. L. Dual-dynamic-bond cross-linked antibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing. ACS Nano 15, 7078–7093 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Yang, Y. et al. Antibacterial conductive uv-blocking adhesion hydrogel dressing with mild on-demand removability accelerated drug-resistant bacteria-infected wound healing. ACS Appl. Mater. Inter. 14, 41726–41741 (2022).

    Article  CAS  Google Scholar 

  44. Liang, Y. et al. Ph/glucose dual responsive metformin release hydrogel dressings with adhesion and self-healing via dual-dynamic bonding for athletic diabetic foot wound healing. ACS Nano 16, 3194–3207 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Aleemardani, M., Trikić, M. Z., Green, N. H. & Claeyssens, F. Elastomeric, bioadhesive and ph-responsive amphiphilic copolymers based on direct crosslinking of poly(glycerol sebacate)-co-polyethylene glycol. Biomater. Sci. 10, 7015–7031 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Song, F. et al. Chitosan-based multifunctional flexible hemostatic bio-hydrogel. Acta Biomater. 136, 170–183 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Chen, K., Wu, Z., Liu, Y., Yuan, Y. & Liu, C. Injectable double-crosslinked adhesive hydrogels with high mechanical resilience and effective energy dissipation for joint wound treatment. Adv. Funct. Mater. 32, 2109687 (2022).

    Article  CAS  Google Scholar 

  48. Panwar, A., Sk, M. M., Lee, B. H. & Tan, L. P. Synthesis and fabrication of gelatin-based elastomeric hydrogels through cosolvent-induced polymer restructuring. RSC Adv. 12, 7922–7934 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Balavigneswaran, C. K. & Muthuvijayan, V. Nanohybrid-reinforced gelatin-ureidopyrimidinone-based self-healing injectable hydrogels for tissue engineering applications. ACS Appl. Bio. Mater. 4, 5362–5377 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Ran, P. et al. On-demand changeable theranostic hydrogels and visual imaging-guided antibacterial photodynamic therapy to promote wound healing. ACS Appl. Mater. Inter. 14, 49375–49388 (2022).

    Article  CAS  Google Scholar 

  51. Wu, H. et al. Supramolecular engineering of nacre-inspired bio-based nanocomposite coatings with exceptional ductility and high-efficient self-repair ability. Chem. Eng. J. 437, 135405 (2022).

    Article  CAS  Google Scholar 

  52. Liang, Y., Xu, H., Li, Z., Zhangji, A. & Guo, B. Bioinspired injectable self-healing hydrogel sealant with fault-tolerant and repeated thermo-responsive adhesion for sutureless post-wound-closure and wound healing. Nanomicro Lett. 14, 185 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yu, R. et al. Supramolecular thermo-contracting adhesive hydrogel with self-removability simultaneously enhancing noninvasive wound closure and mrsa-infected wound healing. Adv. Healthc. Mater. 11, 2102749 (2022).

    Article  CAS  Google Scholar 

  54. Yu, R., Li, Z., Pan, G. & Guo, B. Antibacterial conductive self-healable supramolecular hydrogel dressing for infected motional wound healing. Sci. China Chem. 65, 2238–2251 (2022).

    Article  CAS  Google Scholar 

  55. Park, J. et al. Biobased stimuli-responsive hydrogels that comprise supramolecular interpenetrating networks and exhibit programmed behaviors. Chem. Mater. 33, 8124–8132 (2021).

    Article  CAS  Google Scholar 

  56. Yu, J. et al. An ultrasoft self-fused supramolecular polymer hydrogel for completely preventing postoperative tissue adhesion. Adv. Mater. 33, 2008395 (2021).

    Article  CAS  Google Scholar 

  57. Yang, Y. et al. H-bonding supramolecular hydrogels with promising mechanical strength and shape memory properties for postoperative antiadhesion application. ACS Appl. Mater. Inter. 12, 34161–34169 (2020).

    Article  CAS  Google Scholar 

  58. Fan, Q. et al. Self-healing nanocomposite hydrogels via janus nanosheets: Multiple effects of metal–coordination and host–guest interactions. React. Funct. Polym. 165, 104963 (2021).

    Article  CAS  Google Scholar 

  59. Dong, X. et al. Facile preparation of a thermosensitive and antibiofouling physically crosslinked hydrogel/powder for wound healing. J. Mater. Chem. B 10, 2215–2229 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Ma, X., Wang, C., Yuan, W., Xie, X. & Song, Y. Highly adhesive, conductive, and self-healing hydrogel with triple cross-linking inspired by mussel and DNA for wound adhesion and human motion sensing. ACS Appl. Polym. Mater. 3, 6586–6597 (2021).

    Article  CAS  Google Scholar 

  61. Mehdizadeh, M., Weng, H., Gyawali, D., Tang, L. & Yang, J. Injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure. Biomaterials 33, 7972–7983 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wei, Z. et al. Novel biocompatible polysaccharide-based self-healing hydrogel. Adv. Funct. Mater. 25, 1352–1359 (2015).

    Article  CAS  Google Scholar 

  63. Chen, J. et al. Nanomaterials as photothermal therapeutic agents. Prog. Mater. Sci. 99, 1–26 (2019).

    Article  PubMed  Google Scholar 

  64. Xu, H. et al. Competition between oxidation and coordination in cross-linking of polystyrene copolymer containing catechol groups. ACS Macro Lett. 1, 457–460 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (grant numbers 51973172 and 52273149), State Key Laboratory for Mechanical Behavior of Materials, and the World-Class Universities (Disciplines) and the Characteristic Development Guidance Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

B.G. conceived and supervised the project and provided funding. B.G., Y.L. and R.D. conceived and managed the manuscript preparation. Y.L. and B.G. revised the manuscript with input from all authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Baolin Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Zhao, X. et al. Adv. Funct. Mater. 30, 1910748 (2020): https://doi.org/10.1002/adfm.201910748

Zhao, X. et al. Biomaterials 122, 34–47 (2017): https://doi.org/10.1016/j.biomaterials.2017.01.011

Liang, Y. Q. et al. ACS Nano 15, 7078–7093 (2021): https://doi.org/10.1021/acsnano.1c00204

Yu, R. et al. Adv. Healthc. Mater. 11, 2102749 (2022): https://doi.org/10.1002/adhm.202102749

Yu, R. et al. Sci. China Chem. 65, 2238–2251 (2022): https://doi.org/10.1007/s11426-022-1322-5

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, B., Liang, Y. & Dong, R. Physical dynamic double-network hydrogels as dressings to facilitate tissue repair. Nat Protoc 18, 3322–3354 (2023). https://doi.org/10.1038/s41596-023-00878-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00878-9

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing