Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Design and application of the transformer base editor in mammalian cells and mice

Abstract

Fusing apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like cytidine deaminase with catalytically impaired Cas proteins (e.g., nCas9 or dCas9) provides a novel gene-editing technology, base editing, that grants targeted base substitutions with high efficiency. However, genome-wide and transcriptome-wide off-target mutations are observed in base editing, which raises safety concerns regarding therapeutic applications. Previously, we developed a new base editing system, the transformer base editor (tBE), to induce efficient editing with no observable genome-wide or transcriptome-wide off-target mutations both in mammalian cells and in mice. Here we describe a detailed protocol for the design and application of the tBE. Steps for designing single-guide RNA (sgRNA) and helper sgRNA pairs, making constructs, determining the genome-wide and transcriptome-wide off-target mutations, producing the tBE-containing adeno-associated viruses, delivering adeno-associated viruses into mice and examining the in vivo editing effects are included in this protocol. High-precision base editing by the tBE can be completed within 2–3 weeks (in mammalian cells) or within 6–8 weeks (in mice), with sgRNA–helper sgRNA pairs. The whole process can be collaboratively accomplished by researchers using standard techniques from molecular biology, bioinformatics and mouse husbandry.

Key points

  • This protocol describes the transformer base editor system to induce efficient editing with no observable genome-wide or transcriptome-wide off-target mutations, both in mammalian cells and in mice.

  • The transformer base editor system overcomes the problems of guide RNA-independent and guide RNA-dependent off-target editing as it remains inactive at off-target sites but can be transformed to be active for base editing after binding at the on-target site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the tBE mechanism.
Fig. 2: Design of sgRNA–hsgRNA pairs for in vivo editing.
Fig. 3: Overview of tBE experimental procedures.
Fig. 4: Determination of OT mutations.
Fig. 5: Results of tBE-mediated editing in cells and mice.

Similar content being viewed by others

Data availability

The data used to generate the example results shown in Fig. 5 were originally published in ref. 27. All sequencing datasets have been deposited in the Gene Expression Omnibus under the accession code GSE164837 and GSE164477, at the NCBI BioProject under the accession code PRJNA692761 and in the National Omics Data Encyclopedia under the accession codes OEP001688, OEP001689 and OEP001690. All other data supporting the finding of this study are available from the corresponding authors on reasonable requests. Source data are provided with this paper.

Code availability

The custom Perl and Shell scripts for CFBI are available at GitHub (https://github.com/YangLab/CFBI). The computational pipeline of BEIDOU to identify high-confidence base substitution or indel events from WGS data is available at GitHub (https://github.com/YangLab/BEIDOU). The workflow of RADAR to detect and visualize all 12 possible types of RNA-editing event from RNA-seq data is available at GitHub (https://github.com/YangLab/RADAR).

References

  1. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729 (2016).

    Article  PubMed  Google Scholar 

  3. Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang, B., Yang, L. & Chen, J. Development and application of base editors. CRISPR J. 2, 91–104 (2019).

    Article  PubMed  Google Scholar 

  5. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Yang, L. & Chen, J. A tale of two moieties: rapidly evolving CRISPR/Cas-based genome editing. Trends Biochem. Sci. 45, 874–888 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Porto, E. M., Komor, A. C., Slaymaker, I. M. & Yeo, G. W. Base editing: advances and therapeutic opportunities. Nat. Rev. Drug Discov. 19, 839–859 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nambiar, T. S., Baudrier, L., Billon, P. & Ciccia, A. CRISPR-based genome editing through the lens of DNA repair. Mol. Cell 82, 348–388 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zuo, E. et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289–292 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jin, S. et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364, 292–295 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Zhou, C. et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 571, 275–278 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Grunewald, J. et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, 433–437 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang, B., Li, X., Lei, L. & Chen, J. APOBEC: from mutator to editor. J. Genet. Genomics 44, 423–437 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Lei, L. et al. APOBEC3 induces mutations during repair of CRISPR–Cas9-generated DNA breaks. Nat. Struct. Mol. Biol. 25, 45–52 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Olson, M. E., Harris, R. S. & Harki, D. A. APOBEC enzymes as targets for virus and cancer therapy. Cell Chem. Biol. 25, 36–49 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Chen, J., Yang, B. & Yang, L. To BE or not to BE, that is the question. Nat. Biotechnol. 37, 520–522 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Rees, H. A. et al. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat. Commun. 8, 15790 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, X. et al. Efficient base editing in methylated regions with a human APOBEC3A–Cas9 fusion. Nat. Biotechnol. 36, 946–949 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Billon, P. et al. CRISPR-mediated base editing enables efficient disruption of Eukaryotic genes through induction of STOP codons. Mol. Cell 67, 1068–1079 e1064 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kuscu, C. et al. CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nat. Methods 14, 710–712 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Kim, K. et al. Highly efficient RNA-guided base editing in mouse embryos. Nat. Biotechnol. 35, 435–437 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Diorio, C. et al. Cytosine base editing enables quadruple-edited allogeneic CART cells for T-ALL. Blood 140, 619–629 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, L. et al. Reactivation of gamma-globin expression through Cas9 or base editor to treat beta-hemoglobinopathies. Cell Res. 30, 276–278 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zeng, J. et al. Therapeutic base editing of human hematopoietic stem cells. Nat. Med. 26, 535–541 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liang, P. et al. Correction of beta-thalassemia mutant by base editor in human embryos. Protein Cell 8, 811–822 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koblan, L. W. et al. In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature 589, 608–614 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, L. et al. Eliminating base-editor-induced genome-wide and transcriptome-wide off-target mutations. Nat. Cell Biol. 23, 552–563 (2021).

    Article  PubMed  Google Scholar 

  28. Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C. & Doudna, J. A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62–67 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L. & Corn, J. E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR–Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34, 339–344 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, D., Tai, P. W. L. & Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358–378 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ma, Y. et al. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat. Methods 13, 1029–1035 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Komor, A. C. et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci. Adv. 3, eaao4774 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang, L. et al. Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor. Cell Res. 27, 1289–1292 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Koblan, L. W. et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843–846 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, X. et al. Base editing with a Cpf1-cytidine deaminase fusion. Nat. Biotechnol. 36, 324–327 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, X. et al. Cas12a base editors induce efficient and specific editing with low DNA damage response. Cell Rep. 31, 107723 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, X. et al. Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain. Nat. Cell Biol. 22, 740–750 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Levy, J. M. et al. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat. Biomed. Eng. 4, 97–110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chadwick, A. C., Wang, X. & Musunuru, K. In vivo base editing of PCSK9 (proprotein convertase subtilisin/kexin type 9) as a therapeutic alternative to genome editing. Arterioscler. Thromb. Vasc. Biol. 37, 1741–1747 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu, Y. et al. Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat. Med. 25, 776–783 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kunkel, T. A. & Erie, D. A. Eukaryotic mismatch repair in relation to DNA replication. Annu. Rev. Genet. 49, 291–313 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu, Z. et al. Highly efficient RNA-guided base editing in rabbit. Nat. Commun. 9, 2717 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Xie, J. et al. Efficient base editing for multiple genes and loci in pigs using base editors. Nat. Commun. 10, 2852 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li, G. et al. Base pair editing in goat: nonsense codon introgression into FGF5 results in longer hair. FEBS J. 286, 4675–4692 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, Y. et al. Programmable base editing of zebrafish genome using a modified CRISPR–Cas9 system. Nat. Commun. 8, 118 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zuo, E. et al. A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects. Nat. Methods 17, 600–604 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Jin, S. et al. Rationally designed APOBEC3B cytosine base editors with improved specificity. Mol. Cell 79, 728–740 e726 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Lee, S. et al. Single C-to-T substitution using engineered APOBEC3G-nCas9 base editors with minimum genome- and transcriptome-wide off-target effects. Sci. Adv. 6, eaba1773 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kleinstiver, B. P. et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Chen, J. S. et al. Enhanced proofreading governs CRISPR–Cas9 targeting accuracy. Nature 550, 407–410 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nishimasu, H. et al. Engineered CRISPR–Cas9 nuclease with expanded targeting space. Science 361, 1259–1262 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR–Cas9 variants. Science 368, 290–296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim, Y. B. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371–376 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bae, S., Park, J. & Kim, J. S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473–1475 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gao, R. et al. Genomic and transcriptomic analyses of prime editing guide RNA-independent off-target effects by prime editors. CRISPR J. 5, 276–293 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Li, J. et al. Efficient base editing in G/C-rich regions to model androgen insensitivity syndrome. Cell Res. 29, 174–176 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Villiger, L. et al. In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA. Nat. Biomed. Eng. 5, 179–189 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Concordet, J. P. & Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46, W242–W245 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Listgarten, J. et al. Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs. Nat. Biomed. Eng. 2, 38–47 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cancellieri, S. et al. Human genetic diversity alters off-target outcomes of therapeutic gene editing. Nat. Genet. 55, 34–43 (2023).

    Article  CAS  PubMed  Google Scholar 

  66. Sena-Esteves, M. & Gao, G. Purification of recombinant adeno-associated viruses (rAAVs) by iodixanol gradient centrifugation. Cold Spring Harb. Protoc. 2020, 095612 (2020).

    Article  PubMed  Google Scholar 

  67. Hwang, G. H. et al. Web-based design and analysis tools for CRISPR base editing. BMC Bioinform. 19, 542 (2018).

    Article  CAS  Google Scholar 

  68. Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ramaswami, G. et al. Identifying RNA editing sites using RNA sequencing data alone. Nat. Methods 10, 128–132 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kent, W J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by 2018YFA0801401 (J.C.) and 2019YFA0802804 (L.Y.) from the National Key R&D Program of China, 81872305 (J.C.) and 31925011 (L.Y.) from the National Natural Science Foundation of China, NK2022010207 (J.C.) from Ministry of Agriculture and Rural Affairs, 21JC1404600 (J.C.), 20PJ1410200 (J.L.) and 23XD1422500 (J.C.) from Shanghai Municipal Science and Technology Commission. We thank Shanghai Frontiers Science Center for Biomacromolecules and Precision Medicine, ShanghaiTech University, Shanghai Clinical Research and Trial Center, Animal Core Facility, ShanghaiTech University and Molecular and Cell Biology Core Facility, School of Life Science and Technology, ShanghaiTech University for providing support.

Author information

Authors and Affiliations

Authors

Contributions

J.C., L.Y. and J.L. conceived, designed and supervised the project. W.H., B.-Q.G., J.Z., Z.H., J.L., L.Y. and J.C. wrote the paper.

Corresponding authors

Correspondence to Jianfeng Li, Li Yang or Jia Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Yongsub Kim, Liangxue Lai, Zhanjun Li, Shaohua Yao, Erwei Zuo and the other, anonymous, reviwer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Wang, L. et al. Nat. Cell Biol. 23, 552-563 (2021): https://doi.org/10.1038/s41556-021-00671-4

Extended data

Extended Data Fig. 1 Procedure to construct the designed plasmids each of which expresses a pair of hsgRNA-MS2 and sgRNA-boxB.

a, The schematic diagram demonstrating the processes of constructing one plasmid expressing a pair of designed hsgRNA-MS2 and sgRNA-boxB. b, The schematic diagram demonstrating the construction of plasmids designed for the screening of all combinations of sgRNAs and hsgRNAs against one on-target site.

Supplementary information

Supplementary Table 1

Supplementary Table 1.

Source data

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, W., Gao, BQ., Zhu, J. et al. Design and application of the transformer base editor in mammalian cells and mice. Nat Protoc 18, 3194–3228 (2023). https://doi.org/10.1038/s41596-023-00877-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00877-w

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research