Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tutorial: a guide for the selection of fast and accurate computational tools for the prediction of intrinsic disorder in proteins

Abstract

Intrinsic disorder is instrumental for a wide range of protein functions, and its analysis, using computational predictions from primary structures, complements secondary and tertiary structure-based approaches. In this Tutorial, we provide an overview and comparison of 23 publicly available computational tools with complementary parameters useful for intrinsic disorder prediction, partly relying on results from the Critical Assessment of protein Intrinsic Disorder prediction experiment. We consider factors such as accuracy, runtime, availability and the need for functional insights. The selected tools are available as web servers and downloadable programs, offer state-of-the-art predictions and can be used in a high-throughput manner. We provide examples and instructions for the selected tools to illustrate practical aspects related to the submission, collection and interpretation of predictions, as well as the timing and their limitations. We highlight two predictors for intrinsically disordered proteins, flDPnn as accurate and fast and IUPred as very fast and moderately accurate, while suggesting ANCHOR2 and MoRFchibi as two of the best-performing predictors for intrinsically disordered region binding. We link these tools to additional resources, including databases of predictions and web servers that integrate multiple predictive methods. Altogether, this Tutorial provides a hands-on guide to comparatively evaluating multiple predictors, submitting and collecting their own predictions, and reading and interpreting results. It is suitable for experimentalists and computational biologists interested in accurately and conveniently identifying intrinsic disorder, facilitating the functional characterization of the rapidly growing collections of protein sequences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Predictive performance of disorder predictors available to end users.
Fig. 2: Computational analysis of human cellular tumor antigen p53 (UniProt158 ID: P04637) using disorder and disorder function predictors.
Fig. 3: Computational analysis of human BRCA1 (UniProt158 ID: P38398) using disorder and disorder function predictors.
Fig. 4: Example of flDPnn web server pages.
Fig. 5: Example of IUPred web server pages.
Fig. 6: Example of ANCHOR2 web server pages.
Fig. 7: Example of MoRFchibi SYSTEM web server pages.

Similar content being viewed by others

References

  1. Uversky, V. N. Natively unfolded proteins: a point where biology waits for physics. Protein Sci. 11, 739–756 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Anfinsen, C. B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).

    Article  CAS  PubMed  Google Scholar 

  3. Redfern, O. C., Dessailly, B. & Orengo, C. A. Exploring the structure and function paradigm. Curr. Opin. Struct. Biol. 18, 394–402 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. van der Lee, R. et al. Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589–6631 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Oldfield, C. J., Uversky, V. N., Dunker, A. K. & Kurgan, L. in Intrinsically Disordered Proteins (ed. Salvi, N.) 1–34 (Academic Press, 2019).

  6. Dunker, A. K. et al. What’s in a name? Why these proteins are intrinsically disordered. Intrinsically Disord. Proteins 1, e24157 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Peng, Z. et al. Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life. Cell Mol. Life Sci. 72, 137–151 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Xue, B., Dunker, A. K. & Uversky, V. N. Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J. Biomol. Struct. Dyn. 30, 137–149 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Ward, J. J., Sodhi, J. S., McGuffin, L. J., Buxton, B. F. & Jones, D. T. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J. Mol. Biol. 337, 635–645 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Uversky, V. N. Unusual biophysics of intrinsically disordered proteins. Biochim. Biophys. Acta 1834, 932–951 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Uversky, V. N. & Dunker, A. K. Understanding protein non-folding. Biochim. Biophys. Acta 1804, 1231–1264 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dyson, H. J. & Wright, P. E. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6, 197–208 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Tompa, P. Intrinsically unstructured proteins. Trends Biochem. Sci. 27, 527–533 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Dunker, A. K. et al. Intrinsically disordered protein. J. Mol. Graph. Model. 19, 26–59 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Tompa, P., Szasz, C. & Buday, L. Structural disorder throws new light on moonlighting. Trends Biochem. Sci. 30, 484–489 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Dunker, A. K., Cortese, M. S., Romero, P., Iakoucheva, L. M. & Uversky, V. N. Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J. 272, 5129–5148 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Hu, G., Wu, Z., Uversky, V. N. & Kurgan, L. Functional analysis of human hub proteins and their interactors involved in the intrinsic disorder-enriched interactions. Int. J. Mol. Sci. 18, 2761 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Patil, A., Kinoshita, K. & Nakamura, H. Domain distribution and intrinsic disorder in hubs in the human protein–protein interaction network. Protein Sci. 19, 1461–1468 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Skinnider, M. A. et al. An atlas of protein–protein interactions across mouse tissues. Cell 184, 4073–4089 e4017 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Holguin-Cruz, J. A., Foster, L. J. & Gsponer, J. Where protein structure and cell diversity meet. Trends Cell Biol. 32, 996–1007 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Tantos, A., Han, K. H. & Tompa, P. Intrinsic disorder in cell signaling and gene transcription. Mol. Cell Endocrinol. 348, 457–465 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Bondos, S. E., Dunker, A. K. & Uversky, V. N. Intrinsically disordered proteins play diverse roles in cell signaling. Cell Commun. Signal. 20, 20 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Darling, A. L. & Uversky, V. N. Intrinsic disorder and posttranslational modifications: the darker side of the biological dark matter. Front. Genet. 9, 158 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jakob, U., Kriwacki, R. & Uversky, V. N. Conditionally and transiently disordered proteins: awakening cryptic disorder to regulate protein function. Chem. Rev. 114, 6779–6805 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Uversky, V. N., Oldfield, C. J. & Dunker, A. K. Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J. Mol. Recognit. 18, 343–384 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Trudeau, T. et al. Structure and intrinsic disorder in protein autoinhibition. Structure 21, 332–341 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Buday, L. & Tompa, P. Functional classification of scaffold proteins and related molecules. FEBS J. 277, 4348–4355 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Cortese, M. S., Uversky, V. N. & Dunker, A. K. Intrinsic disorder in scaffold proteins: getting more from less. Prog. Biophys. Mol. Biol. 98, 85–106 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xue, B. et al. Stochastic machines as a colocalization mechanism for scaffold protein function. FEBS Lett. 587, 1587–1591 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fuxreiter, M. et al. Disordered proteinaceous machines. Chem. Rev. 114, 6806–6843 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Romero, P. R. et al. Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc. Natl Acad. Sci. USA 103, 8390–8395 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou, J. H., Zhao, S. W. & Dunker, A. K. Intrinsically disordered proteins link alternative splicing and post-translational modifications to complex cell signaling and regulation. J. Mol. Biol. 430, 2342–2359 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Antifeeva, I. A. et al. Liquid–liquid phase separation as an organizing principle of intracellular space: overview of the evolution of the cell compartmentalization concept. Cell. Mol. Life Sci. 79, 251 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Uversky, V. N. Recent developments in the field of intrinsically disordered proteins: Intrinsic disorder-based emergence in cellular biology in light of the physiological and pathological liquid-liquid phase transitions. Annu. Rev. Biophys. 50, 135–156 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Uversky, V. N. Protein intrinsic disorder and structure–function continuum. Prog. Mol. Biol. Transl. Sci. 166, 1–17 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Dill, K. A., Ozkan, S. B., Shell, M. S. & Weikl, T. R. The protein folding problem. Annu. Rev. Biophys. 37, 289–316 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Senior, A. W. et al. Improved protein structure prediction using potentials from deep learning. Nature 577, 706–710 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Varadi, M. et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2021).

    Article  PubMed Central  Google Scholar 

  40. Chakravarty, D. & Porter, L. L. AlphaFold2 fails to predict protein fold switching. Protein Sci. 31, e4353 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Baek, K. T. & Kepp, K. P. Assessment of AlphaFold2 for human proteins via residue solvent exposure. J. Chem. Inf. Model. 62, 3391–3400 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Hemmings, H. C. Jr., Nairn, A. C., Aswad, D. W. & Greengard, P. DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. II. Purification and characterization of the phosphoprotein from bovine caudate nucleus. J. Neurosci. 4, 99–110 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gast, K. et al. Prothymosin alpha: a biologically active protein with random coil conformation. Biochemistry 34, 13211–13218 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Weinreb, P. H., Zhen, W., Poon, A. W., Conway, K. A. & Lansbury, P. T. Jr. NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35, 13709–13715 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Williams, R. M. et al. The protein non-folding problem: amino acid determinants of intrinsic order and disorder. Pac. Symp. Biocomput. 2001, 89–100 (2001).

    Google Scholar 

  46. Campen, A. et al. TOP-IDP-scale: a new amino acid scale measuring propensity for intrinsic disorder. Protein Pept. Lett. 15, 956–963 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao, B. & Kurgan, L. Compositional bias of intrinsically disordered proteins and regions and their predictions. Biomolecules 12, 888 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yan, J., Cheng, J., Kurgan, L. & Uversky, V. N. Structural and functional analysis of ‘non-smelly’ proteins. Cell. Mol. Life Sci. 77, 2423–2440 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Romero, P. et al. Sequence complexity of disordered protein. Proteins 42, 38–48 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Zhao, B. & Kurgan, L. Surveying over 100 predictors of intrinsic disorder in proteins. Expert Rev. Proteom. 18, 1019–1029 (2021).

    Article  CAS  Google Scholar 

  51. Zhao, B. & Kurgan, L. in Machine Learning in Bioinformatics of Protein Sequences 205–236 (World Scientific, 2023).

  52. Liu, Y., Wang, X. & Liu, B. A comprehensive review and comparison of existing computational methods for intrinsically disordered protein and region prediction. Brief. Bioinform. 20, 330–346 (2019).

    Article  PubMed  Google Scholar 

  53. Meng, F., Uversky, V. N. & Kurgan, L. Comprehensive review of methods for prediction of intrinsic disorder and its molecular functions. Cell. Mol. Life Sci. 74, 3069–3090 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Quaglia, F. et al. DisProt in 2022: improved quality and accessibility of protein intrinsic disorder annotation. Nucleic Acids Res. 50, D480–D487 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Sickmeier, M. et al. DisProt: the database of disordered proteins. Nucleic Acids Res. 35, D786–D793 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. He, B. et al. Predicting intrinsic disorder in proteins: an overview. Cell Res. 19, 929–949 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Meng, F., Uversky, V. & Kurgan, L. Computational prediction of intrinsic disorder in proteins. Curr. Protoc. Protein Sci. 88, 2.16.11–12.16.14 (2017).

    Google Scholar 

  58. Deng, X., Eickholt, J. & Cheng, J. A comprehensive overview of computational protein disorder prediction methods. Mol. Biosyst. 8, 114–121 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Dosztanyi, Z., Meszaros, B. & Simon, I. Bioinformatical approaches to characterize intrinsically disordered/unstructured proteins. Brief. Bioinform. 11, 225–243 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Lieutaud, P. et al. How disordered is my protein and what is its disorder for? A guide through the “dark side” of the protein universe. Intrinsically Disord. Proteins 4, e1259708 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kurgan, L. Resources for computational prediction of intrinsic disorder in proteins. Methods 204, 132–141 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Atkins, J. D., Boateng, S. Y., Sorensen, T. & McGuffin, L. J. Disorder prediction methods, their applicability to different protein targets and their usefulness for guiding experimental studies. Int. J. Mol. Sci. 16, 19040–19054 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Williams, R. J. The conformation properties of proteins in solution. Biol. Rev. Camb. Philos. Soc. 54, 389–437 (1979).

    Article  CAS  PubMed  Google Scholar 

  64. Eickholt, J. & Cheng, J. DNdisorder: predicting protein disorder using boosting and deep networks. BMC Bioinformatics 14, 88 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhao, B. & Kurgan, L. Deep learning in prediction of intrinsic disorder in proteins. Computat. Struct. Biotechnol. J. 20, 1286–1294 (2022).

    Article  Google Scholar 

  66. Katuwawala, A. & Kurgan, L. Comparative assessment of intrinsic disorder predictions with a focus on protein and nucleic acid-binding proteins. Biomolecules 10, 1636 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Necci, M., Piovesan, D., Dosztanyi, Z., Tompa, P. & Tosatto, S. C. E. A comprehensive assessment of long intrinsic protein disorder from the DisProt database. Bioinformatics 34, 445–452 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Peng, Z. L. & Kurgan, L. Comprehensive comparative assessment of in-silico predictors of disordered regions. Curr. Protein Pept. Sci. 13, 6–18 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Walsh, I. et al. Comprehensive large-scale assessment of intrinsic protein disorder. Bioinformatics 31, 201–208 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Necci, M., Piovesan, D., Predictors, C., DisProt, C. & Tosatto, S. C. E. Critical assessment of protein intrinsic disorder prediction. Nat. Methods 18, 472–481 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jin, Y. & Dunbrack, R. L. Jr. Assessment of disorder predictions in CASP6. Proteins 61, 167–175 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Bordoli, L., Kiefer, F. & Schwede, T. Assessment of disorder predictions in CASP7. Proteins 69, 129–136 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Noivirt-Brik, O., Prilusky, J. & Sussman, J. L. Assessment of disorder predictions in CASP8. Proteins 77, 210–216 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Monastyrskyy, B., Kryshtafovych, A., Moult, J., Tramontano, A. & Fidelis, K. Assessment of protein disorder region predictions in CASP10. Proteins 82, 127–137 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Melamud, E. & Moult, J. Evaluation of disorder predictions in CASP5. Proteins 53, 561–565 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Monastyrskyy, B., Fidelis, K., Moult, J., Tramontano, A. & Kryshtafovych, A. Evaluation of disorder predictions in CASP9. Proteins 79, 107–118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lang, B. & Babu, M. M. A community effort to bring structure to disorder. Nat. Methods 18, 454–455 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Hu, G. et al. flDPnn: Accurate intrinsic disorder prediction with putative propensities of disorder functions. Nat. Commun. 12, 4438 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hanson, J., Paliwal, K. K., Litfin, T. & Zhou, Y. SPOT-Disorder2: improved protein intrinsic disorder prediction by ensembled deep learning. Genomics Proteom. Bioinforma. 17, 645–656 (2019).

    Article  Google Scholar 

  80. Mirabello, C. & Wallner, B. rawMSA: end-to-end deep learning using raw multiple sequence alignments. PLoS ONE 14, e0220182 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, S., Ma, J. & Xu, J. AUCpreD: proteome-level protein disorder prediction by AUC-maximized deep convolutional neural fields. Bioinformatics 32, i672–i679 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Akdel, M. et al. A structural biology community assessment of AlphaFold2 applications. Nat. Struct. Mol. Biol. 29, 1056–1067 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kim, S. S., Seffernick, J. T. & Lindert, S. Accurately predicting disordered regions of proteins using rosetta residuedisorder application. J. Phys. Chem. B 122, 3920–3930 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. He, J., Turzo, S. B. A., Seffernick, J. T., Kim, S. S. & Lindert, S. Prediction of intrinsic disorder using rosetta residuedisorder and AlphaFold2. J. Phys. Chem. B 126, 8439–8446 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Wilson, C. J., Choy, W. Y. & Karttunen, M. AlphaFold2: a role for disordered protein/region prediction? Int. J .Mol. Sci. 23, 4591 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Piovesan, D., Monzon, A. M. & Tosatto, S. C. E. Intrinsic protein disorder and conditional folding in AlphaFoldDB. Protein Sci. 31, e4466 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Aderinwale, T. et al. Real-time structure search and structure classification for AlphaFold protein models. Commun. Biol. 5, 316 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kurgan, L., Li, M. & Li, Y. in Systems Medicine (ed. Wolkenhauer, O.) 159–169 (Academic Press, 2021).

  90. Zhao, B. et al. Intrinsic disorder in human RNA-binding proteins. J. Mol. Biol. 433, 167229 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Zhao, B., Katuwawala, A., Uversky, V. N. & Kurgan, L. IDPology of the living cell: intrinsic disorder in the subcellular compartments of the human cell. Cell. Mol. Life Sci. 78, 2371–2385 (2020).

    Article  PubMed  Google Scholar 

  92. Giri, R. et al. Understanding COVID-19 via comparative analysis of dark proteomes of SARS-CoV-2, human SARS and bat SARS-like coronaviruses. Cell. Mol. Life Sci. 78, 1655–1688 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Cubuk, J. et al. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nat. Commun. 12, 1936 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kumar, N. et al. Comprehensive intrinsic disorder analysis of 6108 viral proteomes: from the extent of intrinsic disorder penetrance to functional annotation of disordered viral proteins. J. Proteome Res. 20, 2704–2713 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Zou, H. et al. Pan-cancer assessment of mutational landscape in intrinsically disordered hotspots reveals potential driver genes. Nucleic Acids Res. 50, e49 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Meszaros, B., Hajdu-Soltesz, B., Zeke, A. & Dosztanyi, Z. Mutations of intrinsically disordered protein regions can drive cancer but lack therapeutic strategies. Biomolecules 11, 381 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Oldfield, C. J. et al. Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry 44, 12454–12470 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Vacic, V. et al. Characterization of molecular recognition features, MoRFs, and their binding partners. J. Proteome Res. 6, 2351–2366 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yan, J., Dunker, A. K., Uversky, V. N. & Kurgan, L. Molecular recognition features (MoRFs) in three domains of life. Mol. Biosyst. 12, 697–710 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Katuwawala, A., Peng, Z. L., Yang, J. Y. & Kurgan, L. Computational prediction of MoRFs, short disorder-to-order transitioning protein binding regions. Comput. Struct. Biotechnol. J. 17, 454–462 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mohan, A. et al. Analysis of molecular recognition features (MoRFs). J. Mol. Biol. 362, 1043–1059 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Oldfield, C. J. et al. Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genomics 9, S1 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Uversky, V. N., Oldfield, C. J. & Dunker, A. K. Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J. Mol. Recognit. 18, 343–384 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Uversky, V. N. Multitude of binding modes attainable by intrinsically disordered proteins: a portrait gallery of disorder-based complexes. Chem. Soc. Rev. 40, 1623–1634 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Fuxreiter, M. Fuzzy protein theory for disordered proteins. Biochem. Soc. Trans. 48, 2557–2564 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Miskei, M. et al. Fuzziness enables context dependence of protein interactions. FEBS Lett. 591, 2682–2695 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Tompa, P. & Fuxreiter, M. Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions. Trends Biochem. Sci. 33, 2–8 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Berlow, R. B., Dyson, H. J. & Wright, P. E. Multivalency enables unidirectional switch-like competition between intrinsically disordered proteins. Proc. Natl Acad. Sci. USA 119, e2117338119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bhowmick, P., Guharoy, M. & Tompa, P. Bioinformatics approaches for predicting disordered protein motifs. Adv. Exp. Med. Biol. 870, 291–318 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Katuwawala, A., Ghadermarzi, S. & Kurgan, L. Computational prediction of functions of intrinsically disordered regions. Prog. Mol. Biol. Transl. Sci. 166, 341–369 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Basu, S., Kihara, D. & Kurgan, L. Computational prediction of disordered binding regions. Comput. Struct. Biotechnol. J. 21, 1487–1497 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Meszaros, B., Erdos, G. & Dosztanyi, Z. IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res. 46, W329–W337 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Peng, Z. & Kurgan, L. High-throughput prediction of RNA, DNA and protein binding regions mediated by intrinsic disorder. Nucleic Acids Res. 43, e121 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Malhis, N., Jacobson, M. & Gsponer, J. MoRFchibi SYSTEM: software tools for the identification of MoRFs in protein sequences. Nucleic Acids Res. 44, W488–W493 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Malhis, N., Wong, E. T., Nassar, R. & Gsponer, J. Computational identification of MoRFs in protein sequences using hierarchical application of Bayes rule. PLoS ONE 10, e0141603 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Sharma, R., Raicar, G., Tsunoda, T., Patil, A. & Sharma, A. OPAL: prediction of MoRF regions in intrinsically disordered protein sequences. Bioinformatics 34, 1850–1858 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Uversky, V. N. p53 proteoforms and intrinsic disorder: an illustration of the protein structure-function continuum concept. Int. J. Mol. Sci. 17, 1874 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  118. El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Lewis, T. E. et al. Gene3D: extensive prediction of globular domains in proteins. Nucleic Acids Res. 46, D435–D439 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Schad, E. et al. DIBS: a repository of disordered binding sites mediating interactions with ordered proteins. Bioinformatics 34, 535–537 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Erdos, G., Pajkos, M. & Dosztanyi, Z. IUPred3: prediction of protein disorder enhanced with unambiguous experimental annotation and visualization of evolutionary conservation. Nucleic Acids Res. 49, W297–W303 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Necci, M., Piovesan, D., Dosztanyi, Z. & Tosatto, S. C. E. MobiDB-lite: fast and highly specific consensus prediction of intrinsic disorder in proteins. Bioinformatics 33, 1402–1404 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Kozlowski, L. P. & Bujnicki, J. M. MetaDisorder: a meta-server for the prediction of intrinsic disorder in proteins. BMC Bioinformatics 13, 111 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Fan, X. & Kurgan, L. Accurate prediction of disorder in protein chains with a comprehensive and empirically designed consensus. J. Biomol. Struct. Dyn. 32, 448–464 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Anderson, C. W. & Appella, E. in Handbook of Cell Signaling (eds, Bradshaw, R. A. & Dennis, E. A.) 237–247 (Academic Press, 2004).

  126. Campbell, S. J., Edwards, R. A. & Glover, J. N. Comparison of the structures and peptide binding specificities of the BRCT domains of MDC1 and BRCA1. Structure 18, 167–176 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Christou, C. M. & Kyriacou, K. BRCA1 and its network of interacting partners. Biology 2, 40–63 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Mark, W. Y. et al. Characterization of segments from the central region of BRCA1: an intrinsically disordered scaffold for multiple protein–protein and protein–DNA interactions? J. Mol. Biol. 345, 275–287 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Deng, C. X. & Brodie, S. G. Roles of BRCA1 and its interacting proteins. Bioessays 22, 728–737 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Dosztanyi, Z. Prediction of protein disorder based on IUPred. Protein Sci. 27, 331–340 (2018).

    Article  CAS  PubMed  Google Scholar 

  131. Peng, Z., Wang, C., Uversky, V. N. & Kurgan, L. Prediction of disordered RNA, DNA, and protein binding regions using DisoRDPbind. Methods Mol. Biol. 1484, 187–203 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Meng, F. & Kurgan, L. DFLpred: High-throughput prediction of disordered flexible linker regions in protein sequences. Bioinformatics 32, i341–i350 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Buchan, D. W. A. & Jones, D. T. The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Res. 47, W402–W407 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Oates, M. E. et al. D2P2: database of disordered protein predictions. Nucleic Acids Res. 41, D508–D516 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Piovesan, D. et al. MobiDB: intrinsically disordered proteins in 2021. Nucleic Acids Res. 49, D361–D367 (2021).

    Article  CAS  PubMed  Google Scholar 

  138. Potenza, E., Di Domenico, T., Walsh, I. & Tosatto, S. C. MobiDB 2.0: an improved database of intrinsically disordered and mobile proteins. Nucleic Acids Res. 43, D315–D320 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Di Domenico, T., Walsh, I., Martin, A. J. M. & Tosatto, S. C. E. MobiDB: a comprehensive database of intrinsic protein disorder annotations. Bioinformatics 28, 2080–2081 (2012).

    Article  PubMed  Google Scholar 

  140. Piovesan, D. et al. MobiDB 3.0: more annotations for intrinsic disorder, conformational diversity and interactions in proteins. Nucleic Acids Res. 46, D471–D476 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Zhao, B. et al. DescribePROT: database of amino acid-level protein structure and function predictions. Nucleic Acids Res. 49, D298–D308 (2021).

    Article  CAS  PubMed  Google Scholar 

  142. Peng, K., Radivojac, P., Vucetic, S., Dunker, A. K. & Obradovic, Z. Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 7, 208 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Romero, P. et al. Sequence complexity of disordered protein. Proteins 42, 38–48 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Dosztanyi, Z., Csizmok, V., Tompa, P. & Simon, I. IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21, 3433–3434 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Ishida, T. & Kinoshita, K. Prediction of disordered regions in proteins based on the meta approach. Bioinformatics 24, 1344–1348 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Ghalwash, M. F., Dunker, A. K. & Obradovic, Z. Uncertainty analysis in protein disorder prediction. Mol. Biosyst. 8, 381–391 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Walsh, I., Martin, A. J., Di Domenico, T. & Tosatto, S. C. ESpritz: accurate and fast prediction of protein disorder. Bioinformatics 28, 503–509 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Linding, R. et al. Protein disorder prediction: implications for structural proteomics. Structure 11, 1453–1459 (2003).

    Article  CAS  PubMed  Google Scholar 

  149. Linding, R., Russell, R. B., Neduva, V. & Gibson, T. J. GlobPlot: Exploring protein sequences for globularity and disorder. Nucleic Acids Res. 31, 3701–3708 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Monzon, A. M., Rohr, C. O., Fornasari, M. S. & Parisi, G. CoDNaS 2.0: a comprehensive database of protein conformational diversity in the native state. Database https://doi.org/10.1093/database/baw038 (2016).

  151. Hatos, A. et al. DisProt: intrinsic protein disorder annotation in 2020. Nucleic Acids Res. 48, D269–D276 (2020).

    CAS  PubMed  Google Scholar 

  152. Dinkel, H. et al. ELM 2016—data update and new functionality of the eukaryotic linear motif resource. Nucleic Acids Res. 44, D294–D300 (2016).

    Article  CAS  PubMed  Google Scholar 

  153. Miskei, M., Antal, C. & Fuxreiter, M. FuzDB: database of fuzzy complexes, a tool to develop stochastic structure-function relationships for protein complexes and higher-order assemblies. Nucleic Acids Res. 45, D228–D235 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Fukuchi, S. et al. IDEAL in 2014 illustrates interaction networks composed of intrinsically disordered proteins and their binding partners. Nucleic Acids Res. 42, D320–D325 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. Ficho, E., Remenyi, I., Simon, I. & Meszaros, B. MFIB: a repository of protein complexes with mutual folding induced by binding. Bioinformatics 33, 3682–3684 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. consortium, P. D.-K. PDBe-KB: collaboratively defining the biological context of structural data. Nucleic Acids Res. 50, D534–D542 (2022).

    Article  Google Scholar 

  157. Meszaros, B. et al. PhaSePro: the database of proteins driving liquid–liquid phase separation. Nucleic Acids Res 48, D360–D367 (2020).

    CAS  PubMed  Google Scholar 

  158. UniProt, C. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).

    Article  Google Scholar 

  159. Kjaergaard, M. & Kragelund, B. B. Functions of intrinsic disorder in transmembrane proteins. Cell. Mol. Life Sci. 74, 3205–3224 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Wu, Z. H. et al. In various protein complexes, disordered protomers have large per-residue surface areas and area of protein-, DNA- and RNA-binding interfaces. FEBS Lett. 589, 2561–2569 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Chowdhury, S., Zhang, J. & Kurgan, L. In silico prediction and validation of novel RNA binding proteins and residues in the human proteome. Proteomics 18, e1800064 (2018).

    Article  PubMed  Google Scholar 

  162. Wang, C., Uversky, V. N. & Kurgan, L. Disordered nucleiome: abundance of intrinsic disorder in the DNA- and RNA-binding proteins in 1121 species from Eukaryota, Bacteria and Archaea. Proteomics 16, 1486–1498 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Barik, A. et al. DEPICTER: intrinsic disorder and disorder function prediction server. J. Mol. Biol. 432, 3379–3387 (2020).

    Article  CAS  PubMed  Google Scholar 

  164. Katuwawala, A., Oldfield, C. J. & Kurgan, L. Accuracy of protein-level disorder predictions. Brief. Bioinform. 21, 1509–1522 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Hanson, J., Yang, Y., Paliwal, K. & Zhou, Y. Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks. Bioinformatics 33, 685–692 (2017).

    Article  PubMed  Google Scholar 

  166. Tang, Y. J., Pang, Y. H. & Liu, B. IDP-Seq2Seq: identification of intrinsically disordered regions based on sequence to sequence learning. Bioinformatics 36, 5177–5186 (2021).

    Article  PubMed  Google Scholar 

  167. Emenecker, R. J., Griffith, D. & Holehouse, A. S. Metapredict: a fast, accurate, and easy-to-use predictor of consensus disorder and structure. Biophys. J. 120, 4312–4319 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hanson, J., Paliwal, K. & Zhou, Y. Accurate single-sequence prediction of protein intrinsic disorder by an ensemble of deep recurrent and convolutional architectures. J. Chem. Inf. Model. 58, 2369–2376 (2018).

    Article  CAS  PubMed  Google Scholar 

  169. Liu, Y., Wang, X. & Liu, B. RFPR-IDP: reduce the false positive rates for intrinsically disordered protein and region prediction by incorporating both fully ordered proteins and disordered proteins. Brief. Bioinform. 22, 2000–2011 (2021).

    Article  PubMed  Google Scholar 

  170. Singh, J., Litfin, T., Singh, J., Paliwal, K. & Zhou, Y. SPOT-Contact-LM: improving single-sequence-based prediction of protein contact map using a transformer language model. Bioinformatics 38, 1888–1894 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ieremie, I., Ewing, R. M. & Niranjan, M. TransformerGO: predicting protein–protein interactions by modelling the attention between sets of gene ontology terms. Bioinformatics 38, 2269–2277 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Yan, X. & Liu, Y. Graph-sequence attention and transformer for predicting drug-target affinity. RSC Adv. 12, 29525–29534 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Rives, A. et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proc. Natl Acad. Sci. USA 118, e2016239118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Elnaggar, A. et al. ProtTrans: toward understanding the language of life through self-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 44, 7112–7127 (2022).

    Article  PubMed  Google Scholar 

  175. Bepler, T. & Berger, B. Learning the protein language: evolution, structure, and function. Cell Syst. 12, 654–669 e653 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ilzhofer, D., Heinzinger, M. & Rost, B. SETH predicts nuances of residue disorder from protein embeddings. Front. Bioinform. 2, 1019597 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Zhang, F., Zhao, B., Shi, W., Li, M. & Kurgan, L. DeepDISOBind: accurate prediction of RNA-, DNA- and protein-binding intrinsically disordered residues with deep multi-task learning. Brief. Bioinform. 23, bbab521 (2022).

    Article  PubMed  Google Scholar 

  178. Peng, Z. L., Wang, C., Uversky, V. N. & Kurgan, L. Prediction of disordered RNA, DNA, and protein binding regions using DisoRDPbind. Methods Mol. Biol. 1484, 187–203 (2017).

    Article  CAS  PubMed  Google Scholar 

  179. Katuwawala, A., Zhao, B. & Kurgan, L. DisoLipPred: accurate prediction of disordered lipid binding residues in protein sequences with deep recurrent networks and transfer learning. Bioinformatics 38, 115–124 (2021).

    Article  PubMed  Google Scholar 

  180. Dobson, L. & Tusnady, G. E. MemDis: predicting disordered regions in transmembrane proteins. Int. J. Mol. Sci. 22, 12270 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Galzitskaya, O. V., Garbuzynskiy, S. O. & Lobanov, M. Y. FoldUnfold: web server for the prediction of disordered regions in protein chain. Bioinformatics 22, 2948–2949 (2006).

    Article  CAS  PubMed  Google Scholar 

  182. Lobanov, M. Y. & Galzitskaya, O. V. The Ising model for prediction of disordered residues from protein sequence alone. Phys. Biol. 8, 035004 (2011).

    Article  PubMed  Google Scholar 

  183. Jones, D. T. & Cozzetto, D. DISOPRED3: precise disordered region predictions with annotated protein-binding activity. Bioinformatics 31, 857–863 (2015).

    Article  CAS  PubMed  Google Scholar 

  184. Iqbal, S. & Hoque, M. T. DisPredict: a predictor of disordered protein using optimized RBF Kernel. PLoS ONE 10, e0141551 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Orlando, G., Raimondi, D., Codice, F., Tabaro, F. & Vranken, W. Prediction of disordered regions in proteins with recurrent neural networks and protein dynamics. J. Mol. Biol. 434, 167579 (2022).

    Article  CAS  PubMed  Google Scholar 

  186. Kumar, M. et al. ELM-the eukaryotic linear motif resource in 2020. Nucleic Acids Res. 48, D296–D306 (2020).

    CAS  PubMed  Google Scholar 

  187. Hornbeck, P. V. et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res. 40, D261–D270 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Mistry, J. et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 49, D412–D419 (2021).

    Article  CAS  PubMed  Google Scholar 

  189. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the National Science Foundation (2146027 and 2125218 to L.K.), Robert J. Mattauch Endowment funds to L.K., and National Natural Science Foundation of China (31970649 to G.H. and K.W.). Z.D. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme (778247) and support from ELIXIR Hungary (www.elixir‐hungary.org) and ELIXIR Implementations Studies. E.G. acknowledges support from the ÚNKP-22-1 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund. J.G. acknowledges support from the National Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Contributions

L.K. conceptualized and coordinated the study, and collected and analyzed data. G.H., K.W. S.G., B.Z. and L.K. contributed to the development and to the description of the flDPnn tool. N.M. and J.G. contributed to the development and the description of the MoRFchibi tool. G.E. and Z.D. contributed to the development and the description of the IUPred and ANCHOR tools. V.N.U. contributed to formulation and discussion of the examples. L.K., V.N.U. and Z.D. contributed to writing the article.

Corresponding authors

Correspondence to Lukasz Kurgan, Jörg Gsponer, Vladimir N. Uversky or Zsuzsanna Dosztányi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion and Table 1.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurgan, L., Hu, G., Wang, K. et al. Tutorial: a guide for the selection of fast and accurate computational tools for the prediction of intrinsic disorder in proteins. Nat Protoc 18, 3157–3172 (2023). https://doi.org/10.1038/s41596-023-00876-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00876-x

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing