Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Structure-guided AAV capsid evolution strategies for enhanced CNS gene delivery

Abstract

Over the past 5 years, our laboratory has systematically developed a structure-guided library approach to evolve new adeno-associated virus (AAV) capsids with altered tissue tropism, higher transduction efficiency and the ability to evade pre-existing humoral immunity. Here, we provide a detailed protocol describing two distinct evolution strategies using structurally divergent AAV serotypes as templates, exemplified by improving CNS gene transfer efficiency in vivo. We outline four major components of our strategy: (i) structure-guided design of AAV capsid libraries, (ii) AAV library production, (iii) library cycling in single versus multiple animal models, followed by (iv) evaluation of lead AAV vector candidates in vivo. The protocol spans ~95 d, excluding gene expression analysis in vivo, and can vary depending on user experience, resources and experimental design. A distinguishing attribute of the current protocol is the focus on providing biomedical researchers with 3D structural information to guide evolution of precise ‘hotspots’ on AAV capsids. Furthermore, the protocol outlines two distinct methods for AAV library evolution consisting of adenovirus-enabled infectious cycling in a single species and noninfectious cycling in a cross-species manner. Notably, our workflow can be seamlessly merged with other RNA transcript-based library strategies and tailored for tissue-specific capsid selection. Overall, the procedures outlined herein can be adapted to expand the AAV vector toolkit for genetic manipulation of animal models and development of human gene therapies.

Key points

  • This protocol uses structure-guided design of AAV capsid libraries, infectious and noninfectious library cycling and evaluation of lead candidates in vivo to evolve new AAV vectors for enhanced CNS gene delivery.

  • This approach evolves novel AAV variants iteratively across multiple species. The vectors produced can display altered tissue tropism, higher transduction efficiency and the ability to evade pre-existing humoral immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Methods for AAV evolution and in vivo characterization.
Fig. 2: Structural modeling of wild-type AAV serotypes used as the backbone for directed evolution.
Fig. 3: Generation of the AAV capsid library plasmid.
Fig. 4: NGS library preparation.
Fig. 5: GFP reporter gene expression in C57/BL6 mouse brain after ICV injection.
Fig. 6: Transduction of 4.69 and AAV4 packaging CMV-Cre after ICV dosing of mice.
Fig. 7: GFP reporter gene expression in C57/B6 mouse brain after i.v. administration of ccAAV vectors.
Fig. 8: IntraCSF dosing of ccAAV vectors in the pig CNS.
Fig. 9: IntraCSF dosing of AAV.cc84 or AAV9 after ICV injection in mice.
Fig. 10: Structural modeling of evolved variant AAVs.

Similar content being viewed by others

Data availability

The example data generated for the protocol has not been previously published; however, the protocol has previously been used to produce similar results shown in refs. 12,13,14. All data associated with the figures of this study are included in this paper. Any additional data to support these findings can be made available upon reasonable request to the corresponding author. Source data are provided with this paper.

Code availability

The Perl scripts used for NGS analysis of AAV variants have been described previously12. The scripts have been deposited into the Zenodo repository and can be accessed via https://doi.org/10.5281/zenodo.7075694.

References

  1. Mendell, J. R. et al. Current clinical applications of in vivo gene therapy with AAVs. Mol. Ther. 29, 464–488 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Kuzmin, D. A. et al. The clinical landscape for AAV gene therapies. Nat. Rev. Drug Discov. 20, 173–174 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Mingozzi, F. & High, K. A. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat. Rev. Genet 12, 341–355 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Hudry, E. & Vandenberghe, L. H. Therapeutic AAV gene transfer to the nervous system: a clinical reality. Neuron 101, 839–862 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Deverman, B. E. et al. Gene therapy for neurological disorders: progress and prospects. Nat. Rev. Drug Discov. 17, 641–659 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Rafii, M. S. et al. Adeno-associated viral vector (serotype 2)-nerve growth factor for patients with Alzheimer disease: a randomized clinical trial. JAMA Neurol. 75, 834–841 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  7. Li, C. & Samulski, R. J. Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet 21, 255–272 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Barnes, C., Scheideler, O. & Schaffer, D. Engineering the AAV capsid to evade immune responses. Curr. Opin. Biotechnol. 60, 99–103 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kotterman, M. A. & Schaffer, D. V. Engineering adeno-associated viruses for clinical gene therapy. Nat. Rev. Genet. 15, 445–451 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Wang, D., Tai, P. W. L. & Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358–378 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Zolotukhin, S. & Vandenberghe, L. H. AAV capsid design: a Goldilocks challenge. Trends Mol. Med 28, 183–193 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Gonzalez, T. J. et al. Cross-species evolution of a highly potent AAV variant for therapeutic gene transfer and genome editing. Nat. Commun. 13, 5947 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Havlik, L. P. et al. Coevolution of adeno-associated virus capsid antigenicity and tropism through a structure-guided approach. J. Virol. 94, e00976-20 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  14. Tse, L. V. et al. Structure-guided evolution of antigenically distinct adeno-associated virus variants for immune evasion. Proc. Natl Acad. Sci. USA 114, E4812–E4821 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Havlik, L. P. et al. Receptor switching in newly evolved adeno-associated viruses. J. Virol. 95, e0058721 (2021).

    Article  PubMed  Google Scholar 

  16. Albright, B. H. et al. Mapping the structural determinants required for AAVrh.10 transport across the blood-brain barrier. Mol. Ther. 26, 510–523 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Murlidharan, G. et al. Unique glycan signatures regulate adeno-associated virus tropism in the developing brain. J. Virol. 89, 3976–3987 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Shen, S. et al. Multiple roles for sialylated glycans in determining the cardiopulmonary tropism of adeno-associated virus 4. J. Virol. 87, 13206–13213 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Davidsson, M. et al. A systematic capsid evolution approach performed in vivo for the design of AAV vectors with tailored properties and tropism. Proc. Natl Acad. Sci. USA 116, 27053–27062 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Deverman, B. E. et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 34, 204–209 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Hordeaux, J. et al. The neurotropic properties of AAV-PHP.B are limited to C57BL/6J mice. Mol. Ther. 26, 664–668 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Shen, S. et al. Glycan binding avidity determines the systemic fate of adeno-associated virus type 9. J. Virol. 86, 10408–10417 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Shen, S. et al. Engraftment of a galactose receptor footprint onto adeno-associated viral capsids improves transduction efficiency. J. Biol. Chem. 288, 28814–28823 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Asokan, A. et al. Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. Nat. Biotechnol. 28, 79–82 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Madigan, V. J. & Asokan, A. Engineering AAV receptor footprints for gene therapy. Curr. Opin. Virol. 18, 89–96 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Tarantal, A. F. et al. Systemic and persistent muscle gene expression in rhesus monkeys with a liver de-targeted adeno-associated virus vector. Hum. Gene Ther. 28, 385–391 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Li, C. et al. Development of patient-specific AAV vectors after neutralizing antibody selection for enhanced muscle gene transfer. Mol. Ther. 24, 53–65 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Ogden, P. J. et al. Comprehensive AAV capsid fitness landscape reveals a viral gene and enables machine-guided design. Science 366, 1139–1143 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Bryant, D. H. et al. Deep diversification of an AAV capsid protein by machine learning. Nat. Biotechnol. 39, 691–696 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Tervo, D. G. et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92, 372–382 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Jose, A. et al. High-resolution structural characterization of a new adeno-associated virus serotype 5 antibody epitope toward engineering antibody-resistant recombinant gene delivery vectors. J. Virol. 93, e01394-18 (2019).

    Article  PubMed  Google Scholar 

  32. Meyer, N. L. & Chapman, M. S. Adeno-associated virus (AAV) cell entry: structural insights. Trends Microbiol 30, 432–451 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Emmanuel, S. N. et al. Parvovirus capsid-antibody complex structures reveal conservation of antigenic epitopes across the family. Viral Immunol. 34, 3–17 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Tseng, Y. S. et al. Adeno-associated virus serotype 1 (AAV1)- and AAV5-antibody complex structures reveal evolutionary commonalities in parvovirus antigenic reactivity. J. Virol. 89, 1794–1808 (2015).

    Article  PubMed  Google Scholar 

  35. Mietzsch, M. et al. Structural study of Aavrh.10 receptor and antibody interactions. J. Virol. 95, e0124921 (2021).

    Article  PubMed  Google Scholar 

  36. Emmanuel, S. N. et al. Structurally mapping antigenic epitopes of adeno-associated virus 9: development of antibody escape variants. J. Virol. 96, e0125121 (2022).

    Article  PubMed  Google Scholar 

  37. Hemmi, S. & Spindler, K. R. Murine adenoviruses: tools for studying adenovirus pathogenesis in a natural host. FEBS Lett. 593, 3649–3659 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Gralinski, L. E. et al. Mouse adenovirus type 1-induced breakdown of the blood-brain barrier. J. Virol. 83, 9398–9410 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Guida, J. D. et al. Mouse adenovirus type 1 causes a fatal hemorrhagic encephalomyelitis in adult C57BL/6 but not BALB/c mice. J. Virol. 69, 7674–7681 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Weinberg, J. B. et al. Acute respiratory infection with mouse adenovirus type 1. Virology 340, 245–254 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Kajon, A. E., Brown, C. C. & Spindler, K. R. Distribution of mouse adenovirus type 1 in intraperitoneally and intranasally infected adult outbred mice. J. Virol. 72, 1219–1223 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Klempa, B. et al. A novel cardiotropic murine adenovirus representing a distinct species of mastadenoviruses. J. Virol. 83, 5749–5759 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Ashley, S. L. et al. Matrix metalloproteinase activity in infections by an encephalitic virus, mouse adenovirus type 1. J. Virol. 91, e01412–e01416 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Stier, M. T. & Spindler, K. R. Polymorphisms in Ly6 genes in Msq1 encoding susceptibility to mouse adenovirus type 1. Mamm. Genome 23, 250–258 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Maheshri, N. et al. Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat. Biotechnol. 24, 198–204 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Grimm, D. et al. In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J. Virol. 82, 5887–5911 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Gray, S. J. et al. Directed evolution of a novel adeno-associated virus (AAV) vector that crosses the seizure-compromised blood-brain barrier (BBB). Mol. Ther. 18, 570–578 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Weinmann, J. et al. Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants. Nat. Commun. 11, 5432 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Tabebordbar, M. et al. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell 184, 4919–4938.e22 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. El Andari, J. et al. Semirational bioengineering of AAV vectors with increased potency and specificity for systemic gene therapy of muscle disorders. Sci. Adv. 8, eabn4704 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Nonnenmacher, M. et al. Rapid evolution of blood-brain-barrier-penetrating AAV capsids by RNA-driven biopanning. Mol. Ther. Methods Clin. Dev. 20, 366–378 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Rapti, K. et al. Neutralizing antibodies against AAV serotypes 1, 2, 6, and 9 in sera of commonly used animal models. Mol. Ther. 20, 73–83 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Smola, M. J. et al. Selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis. Nat. Protoc. 10, 1643–1669 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Percie du Sert, N. et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. Br. J. Pharm. 177, 3617–3624 (2020).

    Article  CAS  Google Scholar 

  55. Montiel-Garcia, D. et al. VIPERdb v3.0: a structure-based data analytics platform for viral capsids. Nucleic Acids Res. 49, D809–D816 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Emsley, P. et al. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Grieger, J. C., Choi, V. W. & Samulski, R. J. Production and characterization of adeno-associated viral vectors. Nat. Protoc. 1, 1412–1428 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Schmit, P. F. et al. Cross-packaging and capsid mosaic formation in multiplexed AAV libraries. Mol. Ther. Methods Clin. Dev. 17, 107–121 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Xiao, X., Li, J. & Samulski, R. J. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol. 72, 2224–2232 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Mietzsch, M., Penzes, J. J. & Agbandje-McKenna, M. Twenty-five years of structural parvovirology. Viruses 11, 362 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Tseng, Y. S. & Agbandje-McKenna, M. Mapping the AAV capsid host antibody response toward the development of second generation gene delivery vectors. Front. Immunol. 5, 9 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  65. Challis, R. C. et al. Systemic AAV vectors for widespread and targeted gene delivery in rodents. Nat. Protoc. 14, 379–414 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Goertsen, D. et al. AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset. Nat. Neurosci. 25, 106–115 (2022).

    Article  CAS  PubMed  Google Scholar 

  68. Nonnenmacher, M. et al. High capsid-genome correlation facilitates creation of AAV libraries for directed evolution. Mol. Ther. 23, 675–682 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Govindasamy, L. et al. Structurally mapping the diverse phenotype of adeno-associated virus serotype 4. J. Virol. 80, 11556–11570 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Mietzsch, M. et al. Characterization of AAV-specific affinity ligands: consequences for vector purification and development strategies. Mol. Ther. Methods Clin. Dev. 19, 362–373 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Huang, L. Y. et al. Characterization of the adeno-associated virus 1 and 6 sialic acid binding site. J. Virol. 90, 5219–5230 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Meyer, N. L. et al. Structure of the gene therapy vector, adeno-associated virus with its cell receptor, AAVR. Elife 8, e44707 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Earley, L. F. et al. Adeno-associated virus (AAV) assembly-activating protein is not an essential requirement for capsid assembly of AAV serotypes 4, 5, and 11. J. Virol. 91, e01980-16 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  74. Bleker, S., Sonntag, F. & Kleinschmidt, J. A. Mutational analysis of narrow pores at the fivefold symmetry axes of adeno-associated virus type 2 capsids reveals a dual role in genome packaging and activation of phospholipase A2 activity. J. Virol. 79, 2528–2540 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Bleker, S., Pawlita, M. & Kleinschmidt, J. A. Impact of capsid conformation and Rep-capsid interactions on adeno-associated virus type 2 genome packaging. J. Virol. 80, 810–820 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Grieger, J. C. et al. Surface-exposed adeno-associated virus Vp1-NLS capsid fusion protein rescues infectivity of noninfectious wild-type Vp2/Vp3 and Vp3-only capsids but not that of fivefold pore mutant virions. J. Virol. 81, 7833–7843 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Kronenberg, S. et al. A conformational change in the adeno-associated virus type 2 capsid leads to the exposure of hidden VP1 N termini. J. Virol. 79, 5296–5303 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Kotchey, N. M. et al. A potential role of distinctively delayed blood clearance of recombinant adeno-associated virus serotype 9 in robust cardiac transduction. Mol. Ther. 19, 1079–1089 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Judd, J. et al. Random insertion of mCherry into VP3 domain of adeno-associated virus yields fluorescent capsids with no loss of infectivity. Mol. Ther. Nucleic Acids 1, e54 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  80. Jackson, C. B. et al. AAV vectors engineered to target insulin receptor greatly enhance intramuscular gene delivery. Mol. Ther. Methods Clin. Dev. 19, 496–506 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. DiMattia, M. A. et al. Structural insight into the unique properties of adeno-associated virus serotype 9. J. Virol. 86, 6947–6958 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Mietzsch, M. et al. Characterization of the serpentine adeno-associated virus (SAAV) capsid structure: receptor interactions and antigenicity. J. Virol. 96, e0033522 (2022).

    Article  PubMed  Google Scholar 

  83. Li, W. et al. Generation of novel AAV variants by directed evolution for improved CFTR delivery to human ciliated airway epithelium. Mol. Ther. 17, 2067–2077 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Gurda, B. L. et al. Capsid antibodies to different adeno-associated virus serotypes bind common regions. J. Virol. 87, 9111–9124 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Pulicherla, N. et al. Engineering liver-detargeted AAV9 vectors for cardiac and musculoskeletal gene transfer. Mol. Ther. 19, 1070–1078 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Afione, S. et al. Identification and mutagenesis of the adeno-associated virus 5 sialic acid binding region. J. Virol. 89, 1660–1672 (2015).

    Article  PubMed  Google Scholar 

  87. Lerch, T. F., Xie, Q. & Chapman, M. S. The structure of adeno-associated virus serotype 3B (AAV-3B): insights into receptor binding and immune evasion. Virology 403, 26–36 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Naumer, M. et al. Development and validation of novel AAV2 random libraries displaying peptides of diverse lengths and at diverse capsid positions. Hum. Gene Ther. 23, 492–507 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Michelfelder, S. et al. Peptide ligands incorporated into the threefold spike capsid domain to re-direct gene transduction of AAV8 and AAV9 in vivo. PLoS ONE 6, e23101 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. DiPrimio, N. et al. Surface loop dynamics in adeno-associated virus capsid assembly. J. Virol. 82, 5178–5189 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Horowitz, E. D., Finn, M. G. & Asokan, A. Tyrosine cross-linking reveals interfacial dynamics in adeno-associated viral capsids during infection. ACS Chem. Biol. 7, 1059–1066 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge L. Edwards and K. Gleason for their assistance in completing in-life portions for our pig studies, N. Olby for her assistance in performing the IT infusions in pigs, J. McNamara and E. Matthews for their assistance with dissection of pig brains and Duke DLAR for their assistance with mouse care. We acknowledge the Duke light microscopy core facility and Translating Duke Health initiative for their support. Figures were created in part by using BioRender.

Author information

Authors and Affiliations

Authors

Contributions

T.J.G., A.M.-D. and A.A. conceptualized and wrote the manuscript. T.J.G. and J.A.H. conducted the structural modeling. T.J.G. and S.M.-T. designed and cloned the AAV libraries. T.J.G., A.M.-D., S.M.-T. and R.M.C.R. optimized viral production and purification protocols and conducted in vivo cycling. T.J.G., A.M.-D. and A.A. designed experiments and created the figures. T.J.G., A.M.-D., L.O.B., M.M.F. and D.K.O. conducted experiments and analyzed data. A.A. and J.A.P. acquired funding.

Corresponding author

Correspondence to Aravind Asokan.

Ethics declarations

Competing interests

T.J.G. and A.A. have filed patent applications on the subject matter of this paper. A.A. is a co-founder at StrideBio and TorqueBio and serves on the advisory boards of Atsena Therapeutics, Isolere Bio, Mammoth Bio, Ring Therapeutics and Kriya Therapeutics. S.M.-T. is a current employee of Regeneron Pharmaceuticals. R.M.C.R. is a current employee of Kriya Therapeutics.

Peer review

Peer review information

Nature Protocols thanks David Schaffer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Tse, L. V. et al. Proc. Natl. Acad. Sci. USA 114, E4812–E4821 (2017): https://doi.org/10.1073/pnas.1704766114

Havlik, L. P. et al. J. Virol. 94, e00976-20 (2020): https://doi.org/10.1128/JVI.00976-20

Gonzalez, T. J. et al. Nat. Commun. 13, 5947 (2022): https://doi.org/10.1038/s41467-022-33745-4

Extended data

Extended Data Fig. 1 Representative Sanger sequencing traces for library quality control.

a, Representative sequencing traces of wild-type AAV9 VR VIII. Samples that match this would be excluded from library insert generation. b, Representative sequencing traces for AAV9 VR VIII containing high diversity at the library site. Users should confirm that the wild-type sequence is not called as the majority population and confirm overlapping histogram peak base calls at each position as shown. Samples that match this would be included during library insert generation. Figure created with BioRender.com.

Extended Data Fig. 2 Generation of iodixanol gradients for AAV purification.

Gradients can be created either by overlaying (a) or underlaying (b) of different densities in 17-ml ultracentrifuge tubes. These densities include 17%, 25%, 40% and 60% iodixanol. Virus is added on top of the completed gradient before spinning in an ultracentrifuge. Either method can be used successfully, and the choice of method is based on user preference. Figure created with BioRender.com.

Extended Data Fig. 3 ICV injection station.

a, Ice anesthetization setup. Two large gloves are filled with ice to create a sandwich chamber. When ready to begin, pups are placed between the two gloves of ice and incubated for 3–5 min. During this time, the pup will become unresponsive, and a loss of its pink body color will be observed. b, Stereotaxic injection apparatus with injection pump and Hamilton syringe. Once pups are anesthetized, mount pups on the stage and zero out your X and Y coordinates by moving your needle above the lambda point. The injection site is located 0.8 mm (X), followed by 1.5 mm (Y) up toward the coronal suture and −1.5 mm (Z).

Supplementary information

Source data

Source Data Fig. 5

Statistical source data for panels b, c and d

Source Data Fig. 6

Statistical source data for panel h

Source Data Fig. 7

Statistical source data for panels b and c

Source Data Fig. 9

Statistical source data for panel b

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez, T.J., Mitchell-Dick, A., Blondel, L.O. et al. Structure-guided AAV capsid evolution strategies for enhanced CNS gene delivery. Nat Protoc 18, 3413–3459 (2023). https://doi.org/10.1038/s41596-023-00875-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00875-y

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research