Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

On-chip electrocatalytic microdevices

Abstract

On-chip electrocatalytic microdevices (OCEMs) are an emerging electrochemical platform specialized for investigating nanocatalysts at the microscopic level. The OCEM platform allows high-precision electrochemical measurements at the individual nanomaterial level and, more importantly, offers unique perspectives inaccessible with conventional electrochemical methods. This protocol describes the critical concepts, experimental standardization, operational principles and data analysis of OCEMs. Specifically, standard protocols for the measurement of the electrocatalytic hydrogen evolution reaction of individual 2D nanosheets are introduced with data validation, interpretation and benchmarking. A series of factors (e.g., the exposed area of material, the choice of passivation layer and current leakage) that could have effects on the accuracy and reliability of measurement are discussed. In addition, as an example of the high adaptability of OCEMs, the protocol for in situ electrical transport measurement is detailed. We believe that this protocol will promote the general adoption of the OCEM platform and inspire further development in the near future. This protocol requires essential knowledge in chemical synthesis, device fabrication and electrochemistry.

Key points

  • This protocol describes the use of on-chip electrocatalytic microdevices. Example procedures outline the measurement of the electrocatalytic hydrogen evolution reaction of individual 2D nanosheets and in situ electrical transport measurement.

  • Advantages over alternatives include streamlined device structure, convenient benchmark and facial incorporation of in situ techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Standard three-electrode OCEMs.
Fig. 2: Application of OCEMs for identifying active sites for electrocatalysis.
Fig. 3: Back-gate modulation of 2D semiconductor electrocatalysts in OCEMs.
Fig. 4: The fabrication process of a typical three-electrode C-MoS2 OCEM.
Fig. 5: Validation of the OCEM measurement system by measuring a platinum microelectrode and platinum plate.
Fig. 6: Schematics of key factors affecting the data reliability in OCEM measurements.
Fig. 7: Effects of some factors on the HER performance of C-MoS2 in OCEM measurements.
Fig. 8: The effect of Vds on in situ transport measurement results.
Fig. 9: Nikon NIS-Elements software interface in measuring the exposed C-MoS2 area.
Fig. 10: Illustration and circuit diagram of the three-electrode OCEM measurement system.
Fig. 11: Keysight B2900 Quick IV measurement software interface in the OCEM measurement.
Fig. 12: Data processing of the electrocatalytic HER performance measurement in a three-electrode OCEM.
Fig. 13: Four-electrode OCEMs and an in situ transport measurement system.
Fig. 14: Keysight B2900 Quick IV measurement software interface in the IdsVds tests.
Fig. 15: Keysight B2900 Quick IV measurement software interface in the in situ transport measurement of OCEMs.
Fig. 16: Data processing of the in situ transport measurement.
Fig. 17: Preparation and characterization of C-MoS2.

Similar content being viewed by others

Data availability

Some data supporting the findings of this study were previously published (Fig. 2c,d21; Fig. 3b,c12; Fig. 510; Fig. 8a28; and Fig. 17c,d21). The others (Fig. 1d, Fig. 7, Fig. 8b, Fig. 12, Fig. 16 and Fig. 17b,e) are available at https://figshare.com/articles/figure/NP-P220012B_On-chip_Electrocatalytic_Microdevices/22649083 or from the corresponding author upon reasonable request.

References

  1. Jiao, Y., Zheng, Y., Jaroniec, M. & Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015).

    CAS  PubMed  Google Scholar 

  2. Shindell, D. & Smith, C. J. Climate and air-quality benefits of a realistic phase-out of fossil fuels. Nature 573, 408–411 (2019).

    CAS  PubMed  Google Scholar 

  3. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    PubMed  Google Scholar 

  4. Jin, H. et al. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118, 6337–6408 (2018).

    CAS  PubMed  Google Scholar 

  5. Bard, A. J., Fan, F. R. F., Kwak, J. & Lev, O. Scanning electrochemical microscopy. Introduction and principles. Anal. Chem. 61, 132–138 (1989).

    CAS  Google Scholar 

  6. Courtney, I. A. & Dahn, J. R. Electrochemical and in situ X‐Ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc. 144, 2045 (1997).

    CAS  Google Scholar 

  7. Iwasita, T. & Nart, F. C. In situ infrared spectroscopy at electrochemical interfaces. Prog. Surf. Sci. 55, 271–340 (1997).

    CAS  Google Scholar 

  8. Yang, R. et al. Fabrication of liquid cell for in situ transmission electron microscopy of electrochemical processes. Nat. Protoc. 18, 555–578 (2023).

    CAS  PubMed  Google Scholar 

  9. Yang, H. et al. On-chip electrocatalytic microdevice: an emerging platform for expanding the insight into electrochemical processes. Chem. Soc. Rev. 49, 2916–2936 (2020).

    CAS  PubMed  Google Scholar 

  10. Yu, Y. et al. High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nat. Chem. 10, 638–643 (2018).

    CAS  PubMed  Google Scholar 

  11. Ding, M. et al. An on-chip electrical transport spectroscopy approach for in situ monitoring electrochemical interfaces. Nat. Commun. 6, 7867 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Pan, Y. et al. Boosting the performance of single-atom catalysts via external electric field polarization. Nat. Commun. 13, 3063 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Shah, A. H. et al. The role of alkali metal cations and platinum-surface hydroxyl in the alkaline hydrogen evolution reaction. Nat. Catal. 5, 923–933 (2022).

    CAS  Google Scholar 

  14. He, Y. et al. Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production. Nat. Catal. 5, 212–221 (2022).

    CAS  Google Scholar 

  15. Qi, J. et al. On-chip investigation of electrocatalytic oxygen reduction reaction of 2D materials. Small 18, e2204010 (2022).

    PubMed  Google Scholar 

  16. Cheng, C. et al. Recent progress on two-dimensional materials. Acta Phys. -Chim. Sin. 37, 2108017–2108010 (2021).

    Google Scholar 

  17. Pomerantseva, E., Bonaccorso, F., Feng, X., Cui, Y. & Gogotsi, Y. Energy storage: the future enabled by nanomaterials. Science 366, eaan8285 (2019).

    CAS  PubMed  Google Scholar 

  18. Sarma, P. V. et al. Electrocatalysis on edge-rich spiral WS2 for hydrogen evolution. ACS Nano 13, 10448–10455 (2019).

    CAS  PubMed  Google Scholar 

  19. Hu, D. et al. Unveiling the layer-dependent catalytic activity of PtSe2 atomic crystals for the hydrogen evolution reaction. Angew. Chem. Int. Ed. Engl. 58, 6977–6981 (2019).

    CAS  PubMed  Google Scholar 

  20. Zhang, J. et al. Unveiling active sites for the hydrogen evolution reaction on monolayer MoS2. Adv. Mater. 29, 1701955 (2017).

    Google Scholar 

  21. Wang, W. et al. Preparation of 2D molybdenum phosphide via surface-confined atomic substitution. Adv. Mater. 34, 2203220 (2022).

    CAS  Google Scholar 

  22. Zhu, J. et al. Boundary activated hydrogen evolution reaction on monolayer MoS2. Nat. Commun. 10, 1348 (2019).

    PubMed  PubMed Central  Google Scholar 

  23. Zhang, W. et al. Superior hydrogen evolution reaction performance in 2H-MoS2 to that of 1T phase. Small 15, e1900964 (2019).

    PubMed  Google Scholar 

  24. Wang, J. et al. Field effect enhanced hydrogen evolution reaction of MoS2 nanosheets. Adv. Mater. 29, 1604464 (2017).

    Google Scholar 

  25. Wu, Y. et al. A two-dimensional MoS2 catalysis transistor by solid-state ion gating manipulation and adjustment (SIGMA). Nano Lett. 19, 7293–7300 (2019).

    CAS  PubMed  Google Scholar 

  26. Zhou, Y. et al. Enhanced performance of in-plane transition metal dichalcogenides monolayers by configuring local atomic structures. Nat. Commun. 11, 2253 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tong, X. et al. Dual-regulation of defect sites and vertical conduction by spiral domain for electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. Engl. 61, e202112953 (2022).

    CAS  PubMed  Google Scholar 

  28. He, Y. et al. Self-gating in semiconductor electrocatalysis. Nat. Mater. 18, 1098–1104 (2019).

    CAS  PubMed  Google Scholar 

  29. Liu, X. et al. Activating the electrocatalysis of MoS2 basal plane for hydrogen evolution via atomic defect configurations. Small 18, e2200601 (2022).

    PubMed  Google Scholar 

  30. Yang, H. et al. Single MoTe2 sheet electrocatalytic microdevice for in situ revealing the activated basal plane sites by vacancies engineering. Nano Res. 14, 4814–4821 (2021).

    CAS  Google Scholar 

  31. Ling, N. et al. Active hydrogen evolution on the plasma-treated edges of WTe2. APL Mater. 9, 061108 (2021).

    CAS  Google Scholar 

  32. Fu, Q. et al. 2D transition metal dichalcogenides: design, modulation, and challenges in electrocatalysis. Adv. Mater. 33, 1907818 (2021).

    CAS  Google Scholar 

  33. Nam, G.-H. et al. In-plane anisotropic properties of 1T′-MoS2 layers. Adv. Mater. 31, 1807764 (2019).

    Google Scholar 

  34. He, Y. et al. Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat. Commun. 11, 57 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Engstrom, R. C. & Pharr, C. M. Scanning electrochemical microscopy. Anal. Chem. 61, 1099A–1104A (1989).

    CAS  Google Scholar 

  36. Polcari, D., Dauphin-Ducharme, P. & Mauzeroll, J. Scanning electrochemical microscopy: a comprehensive review of experimental parameters from 1989 to 2015. Chem. Rev. 116, 13234–13278 (2016).

    CAS  PubMed  Google Scholar 

  37. Mariano, R. G. et al. Microstructural origin of locally enhanced CO2 electroreduction activity on gold. Nat. Mater. 20, 1000–1006 (2021).

    CAS  PubMed  Google Scholar 

  38. Wang, Y., Skaanvik, S. A., Xiong, X., Wang, S. & Dong, M. Scanning probe microscopy for electrocatalysis. Matter 4, 3483–3514 (2021).

    CAS  Google Scholar 

  39. Li, H. et al. Kinetic study of hydrogen evolution reaction over strained MoS2 with sulfur vacancies using scanning electrochemical microscopy. J. Am. Chem. Soc. 138, 5123–5129 (2016).

    CAS  PubMed  Google Scholar 

  40. Zhu, X., Wang, C. & Fu, L. Engineering electrocatalytic microcells for two-dimensional materials. Cell Rep. Phys. Sci. 1, 100190 (2020).

    Google Scholar 

  41. Duan, H. et al. Single-atom-layer catalysis in a MoS2 monolayer activated by long-range ferromagnetism for the hydrogen evolution reaction: beyond single-atom catalysis. Angew. Chem. Int. Ed. Engl. 60, 7251–7258 (2021).

    CAS  PubMed  Google Scholar 

  42. Wang, Z. et al. Reversing interfacial catalysis of ambipolar WSe2 single crystal. Adv. Sci. (Weinh.) 7, 1901382 (2020).

    CAS  PubMed  Google Scholar 

  43. Guo, Y. et al. 2D hybrid superlattice-based on-chip electrocatalytic microdevice for in situ revealing enhanced catalytic activity. ACS Nano 14, 1635–1644 (2020).

    CAS  PubMed  Google Scholar 

  44. Zhou, Y. et al. Unveiling the interfacial effects for enhanced hydrogen evolution reaction on MoS2/WTe2 hybrid structures. Small 15, e1900078 (2019).

    PubMed  Google Scholar 

  45. Zhang, J. et al. Discovering superior basal plane active two-dimensional catalysts for hydrogen evolution. Mater. Today 25, 28–34 (2019).

    CAS  Google Scholar 

  46. Jiang, Z. et al. MoS2 Moiré superlattice for hydrogen evolution reaction. ACS Energy Lett. 4, 2830–2835 (2019).

    CAS  Google Scholar 

  47. Zhou, Y. et al. Revealing the contribution of individual factors to hydrogen evolution reaction catalytic activity. Adv. Mater. 30, 1706076 (2018).

    Google Scholar 

  48. Wang, P. et al. Oxygen evolution reaction dynamics monitored by an individual nanosheet-based electronic circuit. Nat. Commun. 8, 645 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. Yang, J. et al. Single atomic vacancy catalysis. ACS Nano 13, 9958–9964 (2019).

    CAS  PubMed  Google Scholar 

  50. You, H. et al. 1T′-MoTe2-based on-chip electrocatalytic microdevice: a platform to unravel oxidation-dependent electrocatalysis. CCS Chem. 1, 396–406 (2019).

    CAS  Google Scholar 

  51. Voiry, D. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 15, 1003–1009 (2016).

    CAS  PubMed  Google Scholar 

  52. Wang, Z. et al. Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites. Nano Energy 49, 634–643 (2018).

    CAS  Google Scholar 

  53. Wang, W. et al. Filling the gap between heteroatom doping and edge enrichment of 2D electrocatalysts for enhanced hydrogen evolution. ACS Nano 17, 1287–1297 (2023).

    CAS  Google Scholar 

  54. Ding, M. et al. On-chip in situ monitoring of competitive interfacial anionic chemisorption as a descriptor for oxygen reduction kinetics. ACS Cent. Sci. 4, 590–599 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Xiang, H. et al. Self-gating enhanced carrier transfer in semiconductor electrocatalyst verified in microdevice. Chin. Chem. Lett. 33, 3221–3226 (2022).

    CAS  Google Scholar 

  56. Kim, C.-H. & Frisbie, C. D. Field effect modulation of outer-sphere electrochemistry at back-gated, ultrathin ZnO electrodes. J. Am. Chem. Soc. 138, 7220–7223 (2016).

    CAS  PubMed  Google Scholar 

  57. Yan, M. et al. Field-effect tuned adsorption dynamics of VSe2 nanosheets for enhanced hydrogen evolution reaction. Nano Lett. 17, 4109–4115 (2017).

    CAS  PubMed  Google Scholar 

  58. Liu, X. et al. The critical role of electrolyte gating on the hydrogen evolution performance of monolayer MoS2. Nano Lett. 19, 8118–8124 (2019).

    CAS  PubMed  Google Scholar 

  59. Wang, Y., Udyavara, S., Neurock, M. & Frisbie, C. D. Field effect modulation of electrocatalytic hydrogen evolution at back-gated two-dimensional MoS2 electrodes. Nano Lett. 19, 6118–6123 (2019).

    CAS  PubMed  Google Scholar 

  60. Zhu, X. et al. Dual self-built gating boosts the hydrogen evolution reaction. Adv. Mater. 34, 2202479 (2022).

    CAS  Google Scholar 

  61. He, Q. et al. In situ probing molecular intercalation in two-dimensional layered semiconductors. Nano Lett. 19, 6819–6826 (2019).

    CAS  PubMed  Google Scholar 

  62. Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).

    CAS  PubMed  Google Scholar 

  63. Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022).

    CAS  PubMed  Google Scholar 

  64. Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451–9469 (2015).

    CAS  PubMed  Google Scholar 

  65. Wang, Y., Zhang, Z., Mao, Y. & Wang, X. Two-dimensional nonlayered materials for electrocatalysis. Energy Environ. Sci. 13, 3993–4016 (2020).

    CAS  Google Scholar 

  66. Cummins, D. R. et al. Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction. Nat. Commun. 7, 11857 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ding, M. et al. Nanoelectronic investigation reveals the electrochemical basis of electrical conductivity in Shewanella and Geobacter. ACS Nano 10, 9919–9926 (2016).

    CAS  PubMed  Google Scholar 

  68. Cao, B. et al. Silver nanoparticles boost charge-extraction efficiency in Shewanella microbial fuel cells. Science 373, 1336–1340 (2021).

    CAS  PubMed  Google Scholar 

  69. Lianos, P. Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen. Appl. Catal. B 210, 235–254 (2017).

    CAS  Google Scholar 

  70. Zhang, X. et al. Hidden vacancy benefit in monolayer 2D semiconductors. Adv. Mater. 33, 2007051 (2021).

    CAS  Google Scholar 

  71. Li, H. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48–53 (2016).

    CAS  PubMed  Google Scholar 

  72. Li, S. et al. Edge-enriched 2D MoS2 thin films grown by chemical vapor deposition for enhanced catalytic performance. ACS Catal. 7, 877–886 (2017).

    CAS  Google Scholar 

  73. Shi, J. et al. Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 8, 10196–10204 (2014).

    CAS  PubMed  Google Scholar 

  74. Li, G. et al. Ammonium salts: new synergistic additive for chemical vapor deposition growth of MoS2. J. Phys. Chem. Lett. 12, 12384–12390 (2021).

    CAS  PubMed  Google Scholar 

  75. Shinagawa, T., Garcia-Esparza, A. T. & Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 5, 13801 (2015).

    PubMed  PubMed Central  Google Scholar 

  76. Liu, L. et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 605, 69–75 (2022).

    CAS  PubMed  Google Scholar 

  77. Bard, A. J., Faulkner, L. R. & White, H. S. Electrochemical Methods: Fundamentals and Applications (John Wiley & Sons, 2022).

  78. Bond, A. M., Oldham, K. B. & Zoski, C. G. Steady-state voltammetry. Anal. Chim. Acta 216, 177–230 (1989).

    CAS  Google Scholar 

  79. Chen, R. et al. Use of platinum as the counter electrode to study the activity of nonprecious metal catalysts for the hydrogen evolution reaction. ACS Energy Lett. 2, 1070–1075 (2017).

    CAS  Google Scholar 

  80. Zhong, G. et al. Determining the hydronium pKα at platinum surfaces and the effect on pH-dependent hydrogen evolution reaction kinetics. Proc. Natl Acad. Sci. USA 119, e2208187119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Q.H. is thankful for support through grants (Project 9229079, 9610482 and 7005468) from the City University of Hong Kong and Early Career Scheme Project 21302821 and General Research Fund Project 11314322 from the University Grants Committee of Hong Kong. M.D. acknowledges the support of the Natural Science Foundation of China (Project Nos. 22172075 and 92156024), the Fundamental Research Funds for the Central Universities in China (Project No. 14380273), the Natural Science Foundation of Jiangsu Province (BK20220069) and the Beijing National Laboratory for Molecular Sciences (Project No. BNLMS202107).

Author information

Authors and Affiliations

Authors

Contributions

W.W., M.D. and Q.H. developed the protocol. W.W., J.Q. and Z.W. performed the experiments. W.W., J.Q., M.D. and Q.H. envisioned and drafted the manuscript. W.Z., K.B., L.Z. and J.W. helped with experiments and data analysis. C.K., L.W. and Y.P. revised the protocols and the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Mengning Ding or Qiyuan He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

: Nature Protocols thanks Youwen Liu, Zheng Liu and Tianyou Zhai for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Ding, M. et al. Nat. Commun. 6, 7867 (2015): https://doi.org/10.1038/ncomms8867

Yu, Y. et al. Nat. Chem. 10, 638–643 (2018): https://doi.org/10.1038/s41557-018-0035-6

He, Y. et al. Nat. Commun. 11, 57 (2020): https://doi.org/10.1038/s41467-019-13631-2

Key data used in this protocol

He, Y. et al. Nat. Mater. 18, 1098–1104 (2019): https://doi.org/10.1038/s41563-019-0426-0

Wang, W. et al. Adv. Mater. 34, 2203220 (2022): https://doi.org/10.1002/adma.202203220

Pan, Y. et al. Nat. Commun. 13, 3063 (2022): https://doi.org/10.1038/s41467-022-30766-x

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Qi, J., Wu, Z. et al. On-chip electrocatalytic microdevices. Nat Protoc 18, 2891–2926 (2023). https://doi.org/10.1038/s41596-023-00866-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00866-z

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing