Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Electrochemical molecular intercalation and exfoliation of solution-processable two-dimensional crystals

Abstract

Electrochemical molecular intercalation of layered semiconducting crystals with organic cations followed by ultrasonic exfoliation has proven to be an effective approach to producing a rich family of organic/inorganic hybrid superlattices and high-quality, solution-processable 2D semiconductors. A traditional method for exfoliating 2D crystals relies on the intercalation of inorganic alkali metal cations. The organic cations (e.g., alkyl chain–substituted quaternary ammonium cations) are much larger than their inorganic counterparts, and the bulky molecular structure endows distinct intercalation and exfoliation chemistry, as well as molecular tunability. By using this protocol, many layered 2D crystals (including graphene, black phosphorus and versatile metal chalcogenides) can be electrochemically intercalated with organic quaternary alkylammonium cations. Subsequent solution-phase exfoliation of the intercalated compounds is realized by regular bath sonication for a short period (5–30 min) to produce free-standing, thin 2D nanosheets. It is also possible to graft additional ligands on the nanosheet surface. The thickness of the exfoliated nanosheets can be measured by using atomic force microscopy and Raman spectroscopy. Modifying the chemical structure and geometrical configuration of alkylammonium cations results in different exfoliation behavior and a family of versatile organic/inorganic hybrid superlattices with tunable physical/chemical properties. The whole protocol takes ~6 h for the successful production of stable, ultrathin 2D nanosheet dispersion in solution and another 11 h for depositing thin films and transferring them onto an arbitrary surface. This protocol does not require expertise beyond basic electrochemistry knowledge and conventional colloidal nanocrystal synthesis and processing.

Key points

  • A layered semiconductor crystal that undergoes electrochemical intercalation with alkyl chain–substituted quaternary ammonium cations can be exfoliated into free-standing 2D nanosheets by sonication. The resulting 2D nanosheets in solution are spin-coated to form thin films on versatile substrates for electronic applications.

  • The main advantage is the preservation of semiconducting characteristics (e.g., MoS2) in the exfoliated nanosheets and assembled thin films.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Solution-based chemical methods for the synthesis of 2D crystal in liquid.
Fig. 2: Schematic illustration of the electrochemical molecular intercalation and exfoliation process.
Fig. 3: Step-by-step illustration of the electrochemical molecular intercalation and exfoliation process.
Fig. 4: Examples of current profile recorded during electrochemical molecular intercalation.
Fig. 5: Photograph of the bulk crystals before and after electrochemical molecular intercalation.
Fig. 6: The nanosheet dispersion in solution.
Fig. 7: AFM analysis of the exfoliated 2D nanosheets.
Fig. 8: TEM images of various 2D nanosheets.
Fig. 9: Raman and photoluminescence spectra of the exfoliated MoS2 nanosheets.
Fig. 10: XPS spectra of MoS2 nanosheets after various post-treatments.
Fig. 11: XRD patterns of a MoS2 nanosheet film after various post-treatments.
Fig. 12: XRD patterns of various exfoliated 2D nanosheets.

Data availability

The main data supporting the findings of this study were previously published27,44. Additional data are available from the corresponding authors upon reasonable request.

References

  1. Wang, Y. et al. P-type electrical contacts for 2D transition-metal dichalcogenides. Nature 610, 61–66 (2022).

    PubMed  Google Scholar 

  2. Liu, L. et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 605, 69–75 (2022).

    CAS  PubMed  Google Scholar 

  3. Qiu, Q. & Huang, Z. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater. 33, e2008126 (2021).

    PubMed  Google Scholar 

  4. Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

    CAS  PubMed  Google Scholar 

  5. Chen, P. et al. Approaching the intrinsic exciton physics limit in two-dimensional semiconductor diodes. Nature 599, 404–410 (2021).

    CAS  PubMed  Google Scholar 

  6. Lin, Z., Huang, Y. & Duan, X. Van der Waals thin-film electronics. Nat. Electron. 2, 378–388 (2019).

    Google Scholar 

  7. He, Y. et al. Self-gating in semiconductor electrocatalysis. Nat. Mater. 18, 1098–1104 (2019).

    CAS  PubMed  Google Scholar 

  8. García de Arquer, F. P. et al. 2D metal oxyhalide-derived catalysts for efficient CO2 electroreduction. Adv. Mater. 30, e1802858 (2018).

    PubMed  Google Scholar 

  9. Pan, X.-F. et al. Transforming ground mica into high-performance biomimetic polymeric mica film. Nat. Commun. 9, 2974 (2018).

    PubMed  PubMed Central  Google Scholar 

  10. Li, W. et al. Light-activated interlayer contraction in two-dimensional perovskites for high-efficiency solar cells. Nat. Nanotechnol. 17, 45–52 (2022).

    CAS  PubMed  Google Scholar 

  11. Kim, H. et al. Actively variable-spectrum optoelectronics with black phosphorus. Nature 596, 232–237 (2021).

    CAS  PubMed  Google Scholar 

  12. Jung, W. et al. Colloidal synthesis of single-layer MSe2 (M = Mo, W) nanosheets via anisotropic solution-phase growth approach. J. Am. Chem. Soc. 137, 7266–7269 (2015).

    CAS  PubMed  Google Scholar 

  13. Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation of layered materials. Science 340, 1226419 (2013).

    Google Scholar 

  14. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  PubMed  Google Scholar 

  15. Eda, G. et al. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111–5116 (2011).

    CAS  PubMed  Google Scholar 

  16. Zhou, J. et al. Composition and phase engineering of metal chalcogenides and phosphorous chalcogenides. Nat. Mater. 22, 450–458 (2022).

    PubMed  Google Scholar 

  17. Yang, S. et al. A delamination strategy for thinly layered defect-free high-mobility black phosphorus flakes. Angew. Chem. Int. Ed. Engl. 57, 4677–4681 (2018).

    CAS  PubMed  Google Scholar 

  18. Li, B.-W. et al. Atomic layer engineering of high-κ ferroelectricity in 2D perovskites. J. Am. Chem. Soc. 139, 10868–10874 (2017).

    CAS  PubMed  Google Scholar 

  19. Ma, R. & Sasaki, T. Nanosheets of oxides and hydroxides: ultimate 2D charge-bearing functional crystallites. Adv. Mater. 22, 5082–5104 (2010).

    CAS  PubMed  Google Scholar 

  20. Xiong, P. et al. Atomic-scale regulation of anionic and cationic migration in alkali metal batteries. Nat. Commun. 12, 4184 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Xiong, P. et al. 2D superlattices for efficient energy storage and conversion. Adv. Mater. 32, e1902654 (2020).

    PubMed  Google Scholar 

  22. Tang, X., Guo, X., Wu, W. & Wang, G. 2D metal carbides and nitrides (MXenes) as high-performance electrode materials for lithium-based batteries. Adv. Energy Mater. 8, 1801897 (2018).

    Google Scholar 

  23. Ghidiu, M., Lukatskaya, M. R., Zhao, M.-Q., Gogotsi, Y. & Barsoum, M. W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014).

    CAS  PubMed  Google Scholar 

  24. Xuan, J. et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew. Chem. Int. Ed. Engl. 55, 14569–14574 (2016).

    CAS  PubMed  Google Scholar 

  25. Tang, B. et al. Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing. Nat. Commun. 13, 3037 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pinilla, S., Coelho, J., Li, K., Liu, J. & Nicolosi, V. Two-dimensional material inks. Nat. Rev. Mater. 7, 717–735 (2022).

    Google Scholar 

  27. Lin, Z. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018).

    CAS  PubMed  Google Scholar 

  28. McManus, D. et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 12, 343–350 (2017).

    CAS  PubMed  Google Scholar 

  29. Sokolikova, M. S., Sherrell, P. C., Palczynski, P., Bemmer, V. L. & Mattevi, C. Direct solution-phase synthesis of 1T′ WSe2 nanosheets. Nat. Commun. 10, 712 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lam, D. et al. Liquid-phase exfoliation of magnetically and optoelectronically active ruthenium trichloride nanosheets. ACS Nano 16, 11315–11324 (2022).

    CAS  PubMed  Google Scholar 

  31. Kelly, A. G. et al. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 356, 69–73 (2017).

    CAS  PubMed  Google Scholar 

  32. Carey, T. et al. Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nat. Commun. 8, 1202 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. Shen, J. et al. Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components. Nano Lett. 15, 5449–5454 (2015).

    CAS  PubMed  Google Scholar 

  34. Backes, C. et al. Production of highly monolayer enriched dispersions of liquid-exfoliated nanosheets by liquid cascade centrifugation. ACS Nano 10, 1589–1601 (2016).

    CAS  PubMed  Google Scholar 

  35. Peng, J. et al. Very large-sized transition metal dichalcogenides monolayers from fast exfoliation by manual shaking. J. Am. Chem. Soc. 139, 9019–9025 (2017).

    CAS  PubMed  Google Scholar 

  36. Zheng, J. et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 5, 2995 (2014).

    PubMed  Google Scholar 

  37. Yang, R. et al. High-yield production of mono-or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method. Nat. Protoc. 17, 358–377 (2022).

    CAS  PubMed  Google Scholar 

  38. Zeng, Z. et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. Engl. 50, 11093–11097 (2011).

    CAS  PubMed  Google Scholar 

  39. Ambrosi, A., Sofer, Z. & Pumera, M. Electrochemical exfoliation of layered black phosphorus into phosphorene. Angew. Chem. Int. Ed. Engl. 56, 10443–10445 (2017).

    CAS  PubMed  Google Scholar 

  40. Leong, S. X. et al. 2H → 1T phase change in direct synthesis of WS2 nanosheets via solution-based electrochemical exfoliation and their catalytic properties. ACS Appl. Mater. Interfaces 9, 26350–26356 (2017).

    CAS  PubMed  Google Scholar 

  41. Ambrosi, A., Sofer, Z., Luxa, J. & Pumera, M. Exfoliation of layered topological insulators Bi2Se3 and Bi2Te3 via electrochemistry. ACS Nano 10, 11442–11448 (2016).

    CAS  PubMed  Google Scholar 

  42. Ambrosi, A. & Pumera, M. Electrochemical exfoliation of MoS2 crystal for hydrogen electrogeneration. Chemistry 24, 18551–18555 (2018).

    CAS  PubMed  Google Scholar 

  43. Ambrosi, A. & Pumera, M. Exfoliation of layered materials using electrochemistry. Chem. Soc. Rev. 47, 7213–7224 (2018).

    CAS  PubMed  Google Scholar 

  44. Lin, Z. et al. High-yield exfoliation of 2D semiconductor monolayers and reassembly of organic/inorganic artificial superlattices. Chem 7, 1887–1902 (2021).

    CAS  Google Scholar 

  45. Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).

    CAS  PubMed  Google Scholar 

  46. Kim, J. et al. All-solution-processed van der Waals heterostructures for wafer-scale electronics. Adv. Mater. 34, e2106110 (2022).

    PubMed  Google Scholar 

  47. Peng, J. et al. Stoichiometric two-dimensional non-van der Waals AgCrS2 with superionic behaviour at room temperature. Nat. Chem. 13, 1235–1240 (2021).

    CAS  PubMed  Google Scholar 

  48. Li, J. et al. Printable two-dimensional superconducting monolayers. Nat. Mater. 20, 181–187 (2021).

    CAS  PubMed  Google Scholar 

  49. Zhang, X. et al. Atomically thin PdSeO3 nanosheets: a promising 2D photocatalyst produced by quaternary ammonium intercalation and exfoliation. Chem. Commun. 56, 5504–5507 (2020).

    CAS  Google Scholar 

  50. Yu, W. et al. Domain engineering in ReS2 by coupling strain during electrochemical exfoliation. Adv. Funct. Mater. 30, 2003057 (2020).

    CAS  Google Scholar 

  51. Shi, H. et al. Ultrafast electrochemical synthesis of defect‐free In2Se3 flakes for large‐area optoelectronics. Adv. Mater. 32, e1907244 (2020).

    PubMed  Google Scholar 

  52. Li, X. et al. High‐yield electrochemical production of large‐sized and thinly layered NiPS3 flakes for overall water splitting. Small 15, e1902427 (2019).

    PubMed  Google Scholar 

  53. Yan, Z. et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science 375, 852–859 (2022).

    CAS  PubMed  Google Scholar 

  54. Kong, L. et al. Inkjet‐printed, large‐area, flexible photodetector array based on electrochemical exfoliated MoS2 film for photoimaging. Adv. Eng. Mater. 25, 2200946 (2023).

    CAS  Google Scholar 

  55. Piatti, E. et al. Charge transport mechanisms in inkjet-printed thin-film transistors based on two-dimensional materials. Nat. Electron. 4, 893–905 (2021).

  56. Li, Y., Duerloo, K.-A. N., Wauson, K. & Reed, E. J. Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating. Nat. Commun. 7, 10671 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, N. et al. Transition from ferromagnetic semiconductor to ferromagnetic metal with enhanced Curie temperature in Cr2Ge2Te6 via organic ion intercalation. J. Am. Chem. Soc. 141, 17166–17173 (2019).

    CAS  PubMed  Google Scholar 

  58. He, Q. et al. In situ probing molecular intercalation in two-dimensional layered semiconductors. Nano Lett. 19, 6819–6826 (2019).

    CAS  PubMed  Google Scholar 

  59. Li, L. et al. Interface capture effect printing atomic‐thick 2D semiconductor thin films. Adv. Mater. 34, 2207392 (2022).

    CAS  Google Scholar 

  60. Kuo, L. et al. All-printed ultrahigh-responsivity MoS2 nanosheet photodetectors enabled by megasonic exfoliation. Adv. Mater. 34, e2203772 (2022).

    PubMed  Google Scholar 

  61. Ma, C. et al. Two-dimensional van der Waals thin film transistors as active matrix for spatially resolved pressure sensing. Nano Res. 14, 3395–3401 (2021).

    CAS  Google Scholar 

  62. Wells, R. A. et al. High performance semiconducting nanosheets via a scalable powder-based electrochemical exfoliation technique. ACS Nano 16, 5719–5730 (2022).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Z.L. acknowledges the start-up grant from Tsinghua University and the National Natural Science Foundation of China (NSFC, grant no. 22275113). Q.H. acknowledges support from Early Career Scheme Project 21302821 and General Research Fund Project 11314322 from the University Grants Committee of Hong Kong.

Author information

Authors and Affiliations

Authors

Contributions

Z.L. and X.D. designed the experiments. Z.L. developed the protocol and performed the experiments. S.W., J.X., J.H., Y.D., T.X. and Q.H. performed the material synthesis and film deposition. D.X. and Y.H. carried out the free-standing film transfer experiment. All authors wrote and reviewed the manuscript.

Corresponding authors

Correspondence to Qiyuan He, Xiangfeng Duan or Zhaoyang Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Martin Pumera, Guoxiu Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Li, L. et al. Adv. Mater. 34, e2207392 (2022): https://doi.org/10.1002/adma.202207392

Yan, Z. et al. Science 375, 852–859 (2022): https://doi.org/10.1126/science.abl8941

Piatti, E. et al. Nat. Electron. 4, 893–905 (2021): https://doi.org/10.1038/s41928-021-00684-9

Key data used in this protocol

Lin, Z. et al. Chem 7, 1887–1902 (2021): https://doi.org/10.1016/j.chempr.2021.03.022

Lin, Z. et al. Nature 562, 254–258 (2018): https://doi.org/10.1038/s41586-018-0574-4

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Xue, J., Xu, D. et al. Electrochemical molecular intercalation and exfoliation of solution-processable two-dimensional crystals. Nat Protoc 18, 2814–2837 (2023). https://doi.org/10.1038/s41596-023-00865-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00865-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing