Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Three-dimensional human neural culture on a chip recapitulating neuroinflammation and neurodegeneration

Abstract

Neuroinflammation has either beneficial or detrimental effects, depending on risk factors and neuron–glia interactions in neurological disorders. However, studying neuroinflammation has been challenging due to the complexity of cell–cell interactions and lack of physio-pathologically relevant neuroinflammatory models. Here, we describe our three-dimensional microfluidic multicellular human neural culture model, referred to as a ‘brain-on-a-chip’ (BoC). This elucidates neuron–glia interactions in a controlled manner and recapitulates pathological signatures of the major neurological disorders: dementia, brain tumor and brain edema. This platform includes a chemotaxis module offering a week-long, stable chemo-gradient compared with the few hours in other chemotaxis models. Additionally, compared with conventional brain models cultured with mixed phenotypes of microglia, our BoC can separate the disease-associated microglia out of heterogeneous population and allow selective neuro–glial engagement in three dimensions. This provides benefits of interpreting the neuro–glia interactions while revealing that the prominent activation of innate immune cells is the risk factor leading to synaptic impairment and neuronal loss, validated in our BoC models of disorders. This protocol describes how to fabricate and implement our human BoC, manipulate in real time and perform end-point analyses. It takes 2 d to set up the device and cell preparations, 1–9 weeks to develop brain models under disease conditions and 2–3 d to carry out analyses. This protocol requires at least 1 month training for researchers with basic molecular biology techniques. Taken together, our human BoCs serve as reliable and valuable platforms to investigate pathological mechanisms involving neuroinflammation and to assess therapeutic strategies modulating neuroinflammation in neurological disorders.

Key points

  • This protocol describes the fabrication of a microfluidic device and its implementation in three-dimensional human neural cultures, allowing the study of neuron–glia interactions in neuroinflammation and neurodegeneration.

  • Compared with conventional animal models, this system enables precise reconstitution of key physiological features of neuroinflammation found in patient tissues. In addition, compared with conventional well plates, this model achieves the separation of reactive microglia instead of heterogeneous populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Workflows to construct 3D human BoC modeling physio-pathological CNSs.
Fig. 2: The fabrication procedure of devices for 3D human BoC.
Fig. 3: Schematics of creating a physio-pathological 3D human BoC.
Fig. 4: Summary of on-chip analyses with either live or fixed cells, and off-chip analyses with conditioned media.
Fig. 5: The procedure of microglial chemotaxis.
Fig. 6: The procedure of on-chip immunostaining.

Similar content being viewed by others

Data availability

Datasets for this protocol are based on the published research articles3,8,12,14,19,21,22. Other data related to this paper can be requested from the authors.

References

  1. Kang, Y. J., Diep, Y. N., Tran, M. & Cho, H. Therapeutic targeting strategies for early- to late-staged Alzheimer’s disease. Int. J. Mol. Sci. 21, 9591 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Heneka, M. T. et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 14, 388–405 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Park, J. et al. A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease. Nat. Neurosci. 21, 941–951 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kinney, J. W. et al. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. 4, 575–590 (2018).

    Google Scholar 

  5. Tan, H.-Y., Cho, H. & Lee, L. P. Human mini-brain models. Nat. Biomed. Eng. 5, 11–25 (2021).

    PubMed  Google Scholar 

  6. Kang, Y. J. & Cho, H. Human brain organoids in Alzheimer’s disease. Organoid 1, e5 (2021).

    Google Scholar 

  7. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017).

    CAS  PubMed  Google Scholar 

  8. McQuade, A. et al. Gene expression and functional deficits underlie TREM2-knockout microglia responses in human models of Alzheimer’s disease. Nat. Comm. 11, 5370 (2020).

    CAS  Google Scholar 

  9. Lee, C. Y. D. & Landreth, G. E. The role of microglia in amyloid clearance from the AD brain. J. Neural Transm. 117, 949–960 (2010).

    CAS  PubMed  Google Scholar 

  10. Gui, X. et al. Botulinum toxin type A promotes microglial M2 polarization and suppresses chronic constriction injury-induced neuropathic pain through the P2X7 receptor. Cell Biosci. 10, 45 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Pitanga, B. P., Nascimento, R. P., Silva, V. D. & Costa, S. L. The role of astrocytes in metabolism and neurotoxicity of the pyrrolizidine alkaloid monocrotaline, the main toxin of Crotalaria retusa. Front. Pharmacol. 3, 144 (2012).

    PubMed  PubMed Central  Google Scholar 

  12. Kang, Y. J., Tan, H.-Y., Lee, C. Y. & Cho, H. An air particulate pollutant induces neuroinflammation and neurodegeneration in human brain models. Adv. Sci. 8, 2101251 (2021).

    CAS  Google Scholar 

  13. Waltl, I. & Kalinke, U. Beneficial and detrimental functions of microglia during viral encephalitis. Trends Neurosci. 45, 158–170 (2022).

    CAS  PubMed  Google Scholar 

  14. Chun, H. et al. Severe reactive astrocytes precipitate pathological hallmarks of Alzheimer’s disease via H2O2 production. Nat. Neurosci. 23, 1555–1566 (2020).

    CAS  PubMed  Google Scholar 

  15. Li, Q. & Barres, B. A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 18, 225–242 (2018).

    CAS  PubMed  Google Scholar 

  16. Volterra, A. & Meldolesi, J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat. Rev. Neurosci. 6, 626–640 (2005).

    CAS  PubMed  Google Scholar 

  17. Masuda, T., Sankowski, R., Staszewski, O. & Prinz, M. Microglia heterogeneity in the single-cell era. Cell Rep. 30, 1271–1281 (2020).

    CAS  PubMed  Google Scholar 

  18. Tan, Y.-L., Yuan, Y. & Tian, L. Microglial regional heterogeneity and its role in the brain. Mol. Psychiatry 25, 351–367 (2020).

    PubMed  Google Scholar 

  19. Cho, H. et al. Microfluidic chemotaxis platform for differentiating the roles of soluble and bound amyloid-β on microglial accumulation. Sci. Rep. 3, 1823 (2013).

    PubMed  PubMed Central  Google Scholar 

  20. Kim, Y. H. et al. A 3D human neural cell culture system for modeling Alzheimer’s disease. Nat. Protoc. 10, 985–1006 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jairaman, A. et al. TREM2 regulates purinergic receptor-mediated calcium signaling and motility in human iPSC-derived microglia. eLife 11, e73021 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tran, V. T. A., Kang, Y. J., Kim, H.-K., Kim, H.-R. & Cho, H. Oral pathogenic bacteria-inducing neurodegenerative microgliosis in human neural cell platform. Int. J. Mol. Sci. 22, 6925 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sofroniew, M. V. Astrocyte reactivity: subtypes, states, and functions in CNS innate immunity. Trends Immunol. 41, 758–770 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Linnerbauer, M., Wheeler, M. A. & Quintana, F. J. Astrocyte crosstalk in CNS inflammation. Neuron 108, 608–622 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zehntner, S. P. et al. Neutrophils that infiltrate the central nervous system regulate T cell responses. J. Immunol. 174, 5124–5131 (2005).

    CAS  PubMed  Google Scholar 

  26. Sas, A. R. et al. A new neutrophil subset promotes CNS neuron survival and axon regeneration. Nat. Immunol. 21, 1496–1505 (2020).

    PubMed  PubMed Central  Google Scholar 

  27. Spiteri, A. G., Wishart, C. L., Pamphlett, R., Locatelli, G. & King, N. J. C. Microglia and monocytes in inflammatory CNS disease: integrating phenotype and function. Acta Neuropathol. 143, 179–224 (2022).

    CAS  PubMed  Google Scholar 

  28. Jankowsky, J. L. & Zheng, H. Practical considerations for choosing a mouse model of Alzheimer’s disease. Mol. Neurodegener. 12, 89 (2017).

    PubMed  PubMed Central  Google Scholar 

  29. Drummond, E. & Wisniewski, T. Alzheimer’s disease: experimental models and reality. Acta Neuropathol. 133, 155–175 (2017).

    CAS  PubMed  Google Scholar 

  30. Vignal, C. et al. Effects of urban coarse particles inhalation on oxidative and inflammatory parameters in the mouse lung and colon. Part. Fibre Toxicol. 14, 46 (2017).

    PubMed  PubMed Central  Google Scholar 

  31. Papadimitriou, C. et al. 3D culture method for Alzheimer’s disease modeling reveals interleukin-4 rescues Aβ42-induced loss of human neural stem cell plasticity. Dev. Cell 46, 85–101.e8 (2018).

    CAS  PubMed  Google Scholar 

  32. Fang, Y. et al. The adhesion and migration of microglia to β-amyloid (Aβ) is decreased with aging and inhibited by Nogo/NgR pathway. J. Neuroinflammation 15, 210 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. Omar Zaki, S. S., Kanesan, L., Leong, M. Y. D. & Vidyadaran, S. The influence of serum-supplemented culture media in a transwell migration assay. Cell Biol. Int. 43, 1201–1204 (2019).

    CAS  PubMed  Google Scholar 

  34. Wang, S. et al. α-Synuclein, a chemoattractant, directs microglial migration via H2O2-dependent Lyn phosphorylation. Proc. Natl Acad. Sci. USA 112, E1926–E1935 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu, H.-j. et al. Analysis of microglial migration by a micropipette assay. Nat. Protoc. 9, 491–500 (2014).

    CAS  PubMed  Google Scholar 

  36. Akther, F., Yakob, S. B., Nguyen, N. T. & Ta, H. T. Surface modification techniques for endothelial cell seeding in PDMS microfluidic devices. Biosensors 10, 182 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fan, D.-H., Yuan, S.-W. & Shen, Y.-M. Surface modification with BSA blocking based on in situ synthesized gold nanoparticles in poly(dimethylsiloxane) microchip. Colloids Surf. B 75, 608–611 (2010).

    CAS  Google Scholar 

  38. Trantidou, T., Elani, Y., Parsons, E. & Ces, O. Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition. Microsyst. Nanoeng. 3, 16091 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu, D., Zhao, B., Dai, Z., Qin, J. & Lin, B. Grafting epoxy-modified hydrophilic polymers onto poly(dimethylsiloxane) microfluidic chip to resist nonspecific protein adsorption. Lab Chip 6, 942–947 (2006).

    CAS  PubMed  Google Scholar 

  40. Ren, K., Zhou, J. & Wu, H. Materials for microfluidic chip fabrication. Acc. Chem. Res. 46, 2396–2406 (2013).

    CAS  PubMed  Google Scholar 

  41. Zhang, B., Korolj, A., Lai, B. F. L. & Radisic, M. Advances in organ-on-a-chip engineering. Nat. Rev. Mater. 3, 257–278 (2018).

    Google Scholar 

  42. Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014).

    CAS  PubMed  Google Scholar 

  43. Ralay Ranaivo, H. & Wainwright, M. S. Albumin activates astrocytes and microglia through mitogen-activated protein kinase pathways. Brain Res. 1313, 222–231 (2010).

    PubMed  Google Scholar 

  44. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, Y., Du, X.-F., Liu, C.-S., Wen, Z.-L. & Du, J.-L. Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev. Cell 23, 1189–1202 (2012).

    CAS  PubMed  Google Scholar 

  46. Alghamri, M. S. et al. G-CSF secreted by mutant IDH1 glioma stem cells abolishes myeloid cell immunosuppression and enhances the efficacy of immunotherapy. Sci. Adv. 7, eabh3243 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sielska, M. et al. Tumour-derived CSF2/granulocyte macrophage colony stimulating factor controls myeloid cell accumulation and progression of gliomas. Br. J. Cancer 123, 438–448 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ghoochani, A. et al. MIF-CD74 signaling impedes microglial M1 polarization and facilitates brain tumorigenesis. Oncogene 35, 6246–6261 (2016).

    CAS  PubMed  Google Scholar 

  49. Yonai, R., Sato, R. & Nasu, M. Cerebral edema induced by hyperammonemia: a case report. Am. J. Emerg. Med. 34, 2461.e3–2461.e5 (2016).

    PubMed  Google Scholar 

  50. Rama Rao, K. V., Jayakumar, A. R., Tong, X., Curtis, K. M. & Norenberg, M. D. Brain aquaporin-4 in experimental acute liver failure. J. Neuropathol. Exp. Neurol. 69, 869–879 (2010).

    CAS  PubMed  Google Scholar 

  51. Rungta, R. L. et al. The cellular mechanisms of neuronal swelling underlying cytotoxic edema. Cell 161, 610–621 (2015).

    CAS  PubMed  Google Scholar 

  52. Back, A. et al. Ammonia-induced brain swelling and neurotoxicity in an organotypic slice model. Neurol. Res. 33, 1100–1108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Tanaka, S. et al. CD206 expression in induced microglia-like cells from peripheral blood as a surrogate biomarker for the specific immune microenvironment of neurosurgical diseases including glioma. Front. Immunol. 12, 670131 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Bodega, G. et al. Ammonia induces aquaporin-4 rearrangement in the plasma membrane of cultured astrocytes. Neurochem. Int. 61, 1314–1324 (2012).

    CAS  PubMed  Google Scholar 

  55. Scott, T. R., Kronsten, V. T., Hughes, R. D. & Shawcross, D. L. Pathophysiology of cerebral oedema in acute liver failure. World J. Gastroenterol. 19, 9240–9255 (2013).

    PubMed  PubMed Central  Google Scholar 

  56. Angelova, P. R. et al. Hyperammonaemia induces mitochondrial dysfunction and neuronal cell death. JHEP Rep. 4, 100510 (2022).

    PubMed  PubMed Central  Google Scholar 

  57. Niknahad, H., Jamshidzadeh, A., Heidari, R., Zarei, M. & Ommati, M. M. Ammonia-induced mitochondrial dysfunction and energy metabolism disturbances in isolated brain and liver mitochondria, and the effect of taurine administration: relevance to hepatic encephalopathy treatment. Clin. Exp. Hepatol. 3, 141–151 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation (NRF-2020R1A2C2010285, NRF-I21SS7606036), the Ministry of Health & Welfare and Ministry of Science and ICT (HU22C0115) through the Korea Health Industry Development Institute and Korea Dementia Research Center, Collabo R&D between Industry, Academy and Research Institutes funded by the Korea Ministry of SMEs and Startups in 2022 (no. S3247358) to H.C. and NRF-2022R1I1A1A01063094 to Y.J.K.

Author information

Authors and Affiliations

Authors

Contributions

H.C. supervised the whole project. Y.J.K. mainly performed the experiments and wrote the manuscript. Y.N.D., M.T., V.T.A.T., G.A. and H.N. contributed to performing the experiments and writing the manuscript.

Corresponding author

Correspondence to Hansang Cho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Caghan Kizil and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Cho, H. et al. Sci. Rep. 3, 1823 (2013): https://doi.org/10.1038/srep01823

Park, J. et al. Nat. Neurosci. 21, 941–951 (2018): https://doi.org/10.1038/s41593-018-0175-4

McQuade, A. et al. Nat. Commun. 11, 5370 (2020): https://doi.org/10.1038/s41467-020-19227-5

Chun, H. et al. Nat. Neurosci. 23, 1555–1566 (2020): https://doi.org/10.1038/s41593-020-00735-y

Kang, Y. J. et al. Adv. Sci. 8, 2101251 (2021): https://doi.org/10.1002/advs.202101251

Supplementary information

Supplementary Information

Supplementary Figs. 1–7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Y.J., Diep, Y.N., Tran, M. et al. Three-dimensional human neural culture on a chip recapitulating neuroinflammation and neurodegeneration. Nat Protoc 18, 2838–2867 (2023). https://doi.org/10.1038/s41596-023-00861-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00861-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing