Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol Extension
  • Published:

Opto-juxtacellular interrogation of neural circuits in freely moving mice

Abstract

Neural circuits are assembled from an enormous variety of neuronal cell types. Although significant advances have been made in classifying neurons on the basis of morphological, molecular and electrophysiological properties, understanding how this diversity contributes to brain function during behavior has remained a major experimental challenge. Here, we present an extension to our previous protocol, in which we describe the technical procedures for performing juxtacellular opto-tagging of single neurons in freely moving mice by using Channelrhodopsin-2–expressing viral vectors. This method allows one to selectively target molecularly defined cell classes for in vivo single-cell recordings. The targeted cells can be labeled via juxtacellular procedures and further characterized via post-hoc morphological and molecular analysis. In its current form, the protocol allows multiple recording and labeling attempts to be performed within individual animals, by means of a mechanical pipette micropositioning system. We provide proof-of-principle validation of this technique by recording from Calbindin-positive pyramidal neurons in the mouse hippocampus during spatial exploration; however, this approach can easily be extended to other behaviors and cortical or subcortical areas. The procedures described here, from the viral injection to the histological processing of brain sections, can be completed in ~4–5 weeks.

This protocol is an extension to: Nat. Protoc. 9, 2369–2381 (2014): https://doi.org/10.1038/nprot.2014.161

Key points

  • This Protocol Extension is for targeting, recording and labeling individual genetically defined neurons in freely moving mice. Juxtacellular labeling of in vivo opto-tagged neurons enables morphological and molecular analysis of recorded cells.

  • Opto-juxtacellular recordings are not restricted by brain area and depth, and the use of freely moving animals allows the study of natural behaviors. Moreover, pairing presynaptic (optogenetic) manipulations with postsynaptic single-cell stimulation enables the study of single-cell plasticity mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Implant components for obtaining juxtacellular opto-tagging recordings in freely moving animals.
Fig. 2: Implant assembly steps for obtaining juxtacellular opto-tagging recordings in freely moving mice.
Fig. 3: In vivo juxtacellular opto-tagging and light-evoked responses.
Fig. 4: Morphological identification of a juxtacellularly recorded and opto-tagged Calb1-positive CA1 pyramidal cell.
Fig. 5: Morphological identification of a juxtacellularly recorded and opto-tagged Calb1-negative CA1 pyramidal cell.

Similar content being viewed by others

Data availability

The data associated with this protocol are available as Source Data and from the supporting primary research article37. Technical drawings for key custom equipment (see Equipment setup) are available in the Supplementary Data.

References

  1. Usoskin, D. et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat. Neurosci. 18, 145–153 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Sandberg, R. Entering the era of single-cell transcriptomics in biology and medicine. Nat. Methods 11, 22–24 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Pollen, A. A. et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol. 32, 1053–1058 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Peng, H. et al. Morphological diversity of single neurons in molecularly defined cell types. Nature 598, 174–181 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brain Initiative Cell Census Network. A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 598, 86–102 (2021).

    Article  Google Scholar 

  6. Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335–346 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yao, Z. et al. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell 184, 3222–3241.e26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Scala, F. et al. Phenotypic variation of transcriptomic cell types in mouse motor cortex. Nature 598, 144–150 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Yuste, R. et al. A community-based transcriptomics classification and nomenclature of neocortical cell types. Nat. Neurosci. 23, 1456–1468 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gouwens, N. W. et al. Classification of electrophysiological and morphological neuron types in the mouse visual cortex. Nat. Neurosci. 22, 1182–1195 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical areas. Nature 563, 72–78 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Klausberger, T. GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus. Eur. J. Neurosci. 30, 947–957 (2009).

    Article  PubMed  Google Scholar 

  13. Klausberger, T. & Somogyi, P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321, 53–57 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pinault, D. Golgi-like labeling of a single neuron recorded extracellularly. Neurosci. Lett. 170, 255–260 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Pinault, D. A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. J. Neurosci. Methods 65, 113–136 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Averkin, R. G., Szemenyei, V., Bordé, S. & Tamás, G. Identified cellular correlates of neocortical ripple and high-gamma oscillations during spindles of natural sleep. Neuron 92, 916–928 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Diamantaki, M. et al. Manipulating hippocampal place cell activity by single-cell stimulation in freely moving mice. Cell Rep. 23, 32–38 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Katona, L. et al. Sleep and movement differentiates actions of two types of somatostatin-expressing GABAergic interneuron in rat hippocampus. Neuron 82, 872–886 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lapray, D. et al. Behavior-dependent specialization of identified hippocampal interneurons. Nat. Neurosci. 15, 1265–1271 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tang, Q. et al. Pyramidal and stellate cell specificity of grid and border representations in layer 2 of medial entorhinal cortex. Neuron 84, 1191–1197 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Valero, M. et al. Determinants of different deep and superficial CA1 pyramidal cell dynamics during sharp-wave ripples. Nat. Neurosci. 18, 1281–1290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tang, Q., Brecht, M. & Burgalossi, A. Juxtacellular recording and morphological identification of single neurons in freely moving rats. Nat. Protoc. 9, 2369–2381 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Diamantaki, M., Frey, M., Preston-Ferrer, P. & Burgalossi, A. Priming spatial activity by single-cell stimulation in the dentate gyrus of freely moving rats. Curr. Biol. 26, 536–541 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Katz, Y., Yizhar, O., Staiger, J. & Lampl, I. Optopatcher—an electrode holder for simultaneous intracellular patch-clamp recording and optical manipulation. J. Neurosci. Methods 214, 113–117 (2013).

    Article  PubMed  Google Scholar 

  25. Munoz, W., Tremblay, R., Levenstein, D. & Rudy, B. Layer-specific modulation of neocortical dendritic inhibition during active wakefulness. Science 355, 954–959 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Munoz, W., Tremblay, R. & Rudy, B. Channelrhodopsin-assisted patching: in vivo recording of genetically and morphologically identified neurons throughout the brain. Cell Rep. 9, 2304–2316 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Luo, L., Callaway, E. M. & Svoboda, K. Genetic dissection of neural circuits. Neuron 57, 634–660 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roux, L., Stark, E., Sjulson, L. & Buzsáki, G. In vivo optogenetic identification and manipulation of GABAergic interneuron subtypes. Curr. Opin. Neurobiol. 26, 88–95 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, F. et al. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat. Protoc. 5, 439–456 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lima, S. Q., Hromádka, T., Znamenskiy, P. & Zador, A. M. PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PloS ONE 4, e6099 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Anikeeva, P. et al. Optetrode: a multichannel readout for optogenetic control in freely moving mice. Nat. Neurosci. 15, 163–170 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zou, L. et al. Self-assembled multifunctional neural probes for precise integration of optogenetics and electrophysiology. Nat. Commun. 12, 5871 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stark, E., Koos, T. & Buzsáki, G. Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals. J. Neurophysiol. 108, 349–363 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tanaka, K. Z. et al. The hippocampal engram maps experience but not place. Science 361, 392–397 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Beyeler, A. et al. Divergent routing of positive and negative information from the amygdala during memory retrieval. Neuron 90, 348–361 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zutshi, I. et al. Recurrent circuits within medial entorhinal cortex superficial layers support grid cell firing. Nat. Commun. 9, 3701 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ding, L. et al. Juxtacellular opto-tagging of hippocampal CA1 neurons in freely moving mice. eLife 11, e71720 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cardin, J. A. et al. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nat. Protoc. 5, 247–254 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Deisseroth, K. Optogenetics. Nat. Methods 8, 26–29 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Zhao, S. et al. Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat. Methods 8, 745–752 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Adesnik, H. Layer-specific excitation/inhibition balances during neuronal synchronization in the visual cortex. J. Physiol. 596, 1639–1657 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kvitsiani, D. et al. Distinct behavioural and network correlates of two interneuron types in prefrontal cortex. Nature 498, 363–366 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee, S., Kruglikov, I., Huang, Z. J., Fishell, G. & Rudy, B. A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nat. Neurosci. 16, 1662–1670 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Adesnik, H., Bruns, W., Taniguchi, H., Huang, Z. J. & Scanziani, M. A neural circuit for spatial summation in visual cortex. Nature 490, 226–231 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ghosh, K. K. et al. Miniaturized integration of a fluorescence microscope. Nat. Methods 8, 871–878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bugeon, S. et al. A transcriptomic axis predicts state modulation of cortical interneurons. Nature 607, 330–338 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Geiller, T. et al. Large-scale 3D two-photon imaging of molecularly identified CA1 interneuron dynamics in behaving mice. Neuron 108, 968–983.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Khan, A. G. et al. Distinct learning-induced changes in stimulus selectivity and interactions of GABAergic interneuron classes in visual cortex. Nat. Neurosci. 21, 851–859 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Lovett-Barron, M. et al. Multiple convergent hypothalamus-brainstem circuits drive defensive behavior. Nat. Neurosci. 23, 959–967 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, Y. et al. A distinct entorhinal cortex to hippocampal CA1 direct circuit for olfactory associative learning. Nat. Neurosci. 20, 559–570 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Baimbridge, K. G., Peet, M. J., McLennan, H. & Church, J. Bursting response to current-evoked depolarization in rat CA1 pyramidal neurons is correlated with lucifer yellow dye coupling but not with the presence of calbindin-D28k. Synapse 7, 269–277 (1991).

  52. Burgalossi, A. et al. Microcircuits of functionally identified neurons in the rat medial entorhinal cortex. Neuron 70, 773–786 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Klausberger, T. et al. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421, 844–848 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Chakrabarti, S. & Schwarz, C. Cortical modulation of sensory flow during active touch in the rat whisker system. Nat. Commun. 9, 3907 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Balsamo, G. et al. Modular microcircuit organization of the presubicular head-direction map. Cell Rep. 39, 110684 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Aravanis, A. M. et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4, S143–S156 (2007).

    Article  PubMed  Google Scholar 

  57. Epsztein, J., Brecht, M. & Lee, A. K. Intracellular determinants of hippocampal CA1 place and silent cell activity in a novel environment. Neuron 70, 109–120 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee, D., Lin, B. J. & Lee, A. K. Hippocampal place fields emerge upon single-cell manipulation of excitability during behavior. Science 337, 849–853 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Diamantaki, M., Frey, M., Berens, P., Preston-Ferrer, P. & Burgalossi, A. Sparse activity of identified dentate granule cells during spatial exploration. Elife 5, e20252 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tang, Q. Structure function relationships in medial entorhinal cortex. Doctoral dissertation, Humboldt Univ. Berlin (2015); http://vuir.vu.edu.au/35038/

  61. Kick, B. L., Gumber, S., Wang, H., Moore, R. H. & Taylor, D. K. Evaluation of 4 presurgical skin preparation methods in mice. J. Am. Assoc. Lab. Anim. Sci. 58, 71–77 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Paxinos, G. & Franklin, K. B. J. Paxinos and Franklin’s The Mouse Brain in Stereotaxic Coordinates (Academic Press, 2012).

  63. Zingg, B., Peng, B., Huang, J., Tao, H. W. & Zhang, L. I. Synaptic specificity and application of anterograde transsynaptic AAV for probing neural circuitry. J. Neurosci. 40, 3250–3267 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Itoga, C. A. et al. New viral-genetic mapping uncovers an enrichment of corticotropin-releasing hormone-expressing neuronal inputs to the nucleus accumbens from stress-related brain regions. J. Comp. Neurol. 527, 2474–2487 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sun, L. et al. Differences in neurotropism and neurotoxicity among retrograde viral tracers. Mol. Neurodegener. 14, 8 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Muller, R., Kubie, J. & Ranck, J. Spatial firing patterns of hippocampal complex-spike cells in a fixed environment. J. Neurosci. 7, 1935–1950 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schwarz, C. et al. The head-fixed behaving rat—procedures and pitfalls. Somatosens. Mot. Res. 27, 131–148 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lo, W. D. et al. Adeno-associated virus-mediated gene transfer to the brain: duration and modulation of expression. Hum. Gene Ther. 10, 201–213 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Aschauer, D. F., Kreuz, S. & Rumpel, S. Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PloS ONE 8, e76310 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cearley, C. N. & Wolfe, J. H. Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. Mol. Ther. 13, 528–537 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Harris, J. A., Wook Oh, S. & Zeng, H. Adeno-associated viral vectors for anterograde axonal tracing with fluorescent proteins in nontransgenic and Cre driver mice. Curr. Protoc. Neurosci. 59, 1.20.21–21.20.18 (2012).

    Article  Google Scholar 

  72. Tang, W., Kochubey, O., Kintscher, M. & Schneggenburger, R. A VTA to basal amygdala dopamine projection contributes to signal salient somatosensory events during fear learning. J. Neurosci. 40, 3969–3980 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Jia, X. et al. High-density extracellular probes reveal dendritic backpropagation and facilitate neuron classification. J. Neurophysiol. 121, 1831–1847 (2019).

    Article  PubMed  Google Scholar 

  74. Buetfering, C., Allen, K. & Monyer, H. Parvalbumin interneurons provide grid cell-driven recurrent inhibition in the medial entorhinal cortex. Nat. Neurosci. 17, 710–718 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Herfst, L. et al. Friction-based stabilization of juxtacellular recordings in freely moving rats. J. Neurophysiol. 108, 697–707 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pinault, D. in Electrophysiological Recording Techniques (eds. Vertes, R. P. & Stackman, R. W. Jr.) Ch. 3, 41–75 (Humana Press, 2011).

  77. Cid, E. & de la Prida, L. M. Methods for single-cell recording and labeling in vivo. J. Neurosci. Methods 325, 108354 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Valero, M. & English, D. F. Head-mounted approaches for targeting single-cells in freely moving animals. J. Neurosci. Methods 326, 108397 (2019).

    Article  PubMed  Google Scholar 

  79. Guesdon, J. L., Ternynck, T. & Avrameas, S. The use of avidin-biotin interaction in immunoenzymatic techniques. J. Histochem. Cytochem. 27, 1131–1139 (1979).

    Article  CAS  PubMed  Google Scholar 

  80. Bratthauer, G. L. The avidin-biotin complex (ABC) method and other avidin-biotin binding methods. Methods Mol. Biol. 588, 257–270 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Ray, S. et al. Grid-layout and theta-modulation of layer 2 pyramidal neurons in medial entorhinal cortex. Science 343, 891–896 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Gogolla, N., Galimberti, I., DePaola, V. & Caroni, P. Staining protocol for organotypic hippocampal slice cultures. Nat. Protoc. 1, 2452–2456 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Im, K., Mareninov, S., Diaz, M. F. P. & Yong, W. H. An introduction to performing immunofluorescence staining. Methods Mol. Biol. 1897, 299–311 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Moreno, V., Smith, E. A. & Piña-Oviedo, S. in Immunohistochemistry and Immunocytochemistry: Methods and Protocols (ed. Del Valle, L.) 131–146 (Springer US, 2022).

  85. Losonczy, A., Zhang, L., Shigemoto, R., Somogyi, P. & Nusser, Z. Cell type dependence and variability in the short-term plasticity of EPSCs in identified mouse hippocampal interneurones. J. Physiol. 542, 193–210 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Smith, D. W. & Day, T. A. Neurochemical identification of fos-positive neurons using two-colour immunoperoxidase staining. J. Neurosci. Methods 47, 73–83 (1993).

    Article  CAS  PubMed  Google Scholar 

  87. Marx, M., Günter, R. H., Hucko, W., Radnikow, G. & Feldmeyer, D. Improved biocytin labeling and neuronal 3D reconstruction. Nat. Protoc. 7, 394–407 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Huang, Q., Zhou, D. & DiFiglia, M. Neurobiotin™, a useful neuroanatomical tracer for in vivo anterograde, retrograde and transneuronal tract-tracing and for in vitro labeling of neurons. J. Neurosci. Methods 41, 31–43 (1992).

    Article  CAS  PubMed  Google Scholar 

  89. Horikawa, K. & Armstrong, W. E. A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates. J. Neurosci. Methods 25, 1–11 (1988).

    Article  CAS  PubMed  Google Scholar 

  90. Mizuseki, K., Diba, K., Pastalkova, E. & Buzsáki, G. Hippocampal CA1 pyramidal cells form functionally distinct sublayers. Nat. Neurosci. 14, 1174–1181 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sharif, F., Tayebi, B., Buzsáki, G., Royer, S. & Fernandez-Ruiz, A. Subcircuits of deep and superficial CA1 place cells support efficient spatial coding across heterogeneous environments. Neuron 109, 363–376.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Cohen, J. D., Bolstad, M. & Lee, A. K. Experience-dependent shaping of hippocampal CA1 intracellular activity in novel and familiar environments. eLife 6, e23040 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Danielson, N. B. et al. Sublayer-specific coding dynamics during spatial navigation and learning in hippocampal area CA1. Neuron 91, 652–665 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fattahi, M., Sharif, F., Geiller, T. & Royer, S. Differential representation of landmark and self-motion information along the CA1 radial axis: self-motion generated place fields shift toward landmarks during septal inactivation. J. Neurosci. 38, 6766–6778 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Geiller, T., Fattahi, M., Choi, J.-S. & Royer, S. Place cells are more strongly tied to landmarks in deep than in superficial CA1. Nat. Commun. 8, 14531 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nigro, M. J., Hashikawa-Yamasaki, Y. & Rudy, B. Diversity and connectivity of layer 5 somatostatin-expressing interneurons in the mouse barrel cortex. J. Neurosci. 38, 1622–1633 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Daigle, T. L. et al. A suite of transgenic driver and reporter mouse lines with enhanced brain-cell-type targeting and functionality. Cell 174, 465–480.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gunaydin, L. A. et al. Ultrafast optogenetic control. Nat. Neurosci. 13, 387–392 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Deisseroth, K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 18, 1213–1225 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang, F., Wang, L. P., Boyden, E. S. & Deisseroth, K. Channelrhodopsin-2 and optical control of excitable cells. Nat. Methods 3, 785–792 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Navas-Olive, A. et al. Multimodal determinants of phase-locked dynamics across deep-superficial hippocampal sublayers during theta oscillations. Nat. Commun. 11, 2217 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Preston-Ferrer, P., Coletta, S., Frey, M. & Burgalossi, A. Anatomical organization of presubicular head-direction circuits. eLife 5, 14592 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Werner Reichardt Centre for Integrative Neuroscience (EXC 307), the Eberhard Karls University of Tübingen, DFG grant BU 3126/2-1 (to A.B.) and the Athene Grant (to P.P.-F.). We thank A. Eritja and F. Monteiro for their excellent technical assistance, S. Ishiyama for illustrations and K. Vollmer and the UKT Fine-Mechanics workshop for excellent support.

Author information

Authors and Affiliations

Authors

Contributions

L.D. and G.B. set up viral and optogenetic tools and optical stimulation hardware and performed experiments for the establishment of the juxtacellular opto-tagging protocol. L.D. and G.B. acquired and analyzed the data. M.D. contributed to the establishment of juxtacellular recordings in freely moving mice. A.B. and P.P-F. supervised the experiments. A.B. drafted the manuscript. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Patricia Preston-Ferrer or Andrea Burgalossi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Takashi Kitamura and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Related links

Key references using this protocol

Diamantaki, M. et al. Cell Rep. 23, 32–38 (2018): https://doi.org/10.1016/j.celrep.2018.03.031

Ding, L. et al. eLife 11, e71720 (2022): https://doi.org/10.7554/eLife.71720

Supplementary information

Supplementary Information

Supplementary Figs. 1–10

Supplementary Data 1

Technical drawing of the micropositioning drive (part 1)

Supplementary Data 2

Technical drawing of the micropositioning drive (part 2)

Source data

Source Data Fig. 3

Statistical source data

Source Data Fig. 4

Statistical source data

Source Data Fig. 5

Statistical source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, L., Balsamo, G., Diamantaki, M. et al. Opto-juxtacellular interrogation of neural circuits in freely moving mice. Nat Protoc 18, 2415–2440 (2023). https://doi.org/10.1038/s41596-023-00842-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00842-7

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing