Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Spiral volumetric optoacoustic tomography for imaging whole-body biodynamics in small animals

Abstract

Fast tracking of biological dynamics across multiple murine organs using the currently commercially available whole-body preclinical imaging systems is hindered by their limited contrast, sensitivity and spatial or temporal resolution. Spiral volumetric optoacoustic tomography (SVOT) provides optical contrast, with an unprecedented level of spatial and temporal resolution, by rapidly scanning a mouse using spherical arrays, thus overcoming the current limitations in whole-body imaging. The method enables the visualization of deep-seated structures in living mammalian tissues in the near-infrared spectral window, while further providing unrivalled image quality and rich spectroscopic optical contrast. Here, we describe the detailed procedures for SVOT imaging of mice and provide specific details on how to implement a SVOT system, including component selection, system arrangement and alignment, as well as the image processing methods. The step-by-step guide for the rapid panoramic (360°) head-to-tail whole-body imaging of a mouse includes the rapid visualization of contrast agent perfusion and biodistribution. The isotropic spatial resolution possible with SVOT can reach 90 µm in 3D, while alternative steps enable whole-body scans in less than 2 s, unattainable with other preclinical imaging modalities. The method further allows the real-time (100 frames per second) imaging of biodynamics at the whole-organ level. The multiscale imaging capacity provided by SVOT can be used for visualizing rapid biodynamics, monitoring responses to treatments and stimuli, tracking perfusion, and quantifying total body accumulation and clearance dynamics of molecular agents and drugs. Depending on the imaging procedure, the protocol requires 1–2 h to complete by users trained in animal handling and biomedical imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SVOT imaging system.
Fig. 2: Tomographic up-sampling.
Fig. 3: Self-gated respiratory motion rejection technique.
Fig. 4: Head-to-tail whole-body in vivo imaging of mice with SVOT.
Fig. 5: Enhancing image fidelity with a dual SOS reconstruction algorithm.
Fig. 6: Rapid overview whole-body scan and suborgan scale biodistribution mapping.
Fig. 7: High frame-rate tracking of cardiac flow dynamics using ICG.
Fig. 8: Volumetric sO2 mapping of a tumor-bearing mouse.

Similar content being viewed by others

Data availability

The statistical source data for Fig. 2c and Fig. 6f–h can be downloaded through the following link: https://doi.org/10.6084/m9.figshare.22257232. The raw source data for Fig. 4 can be downloaded through the following link: https://doi.org/10.6084/m9.figshare.21769340. The 3D computer aided design models of the custom-engineered animal can be downloaded through the following link: https://doi.org/10.6084/m9.figshare.21707867. All other raw datasets are available for research purposes from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The SVOT reconstruction code for Fig. 4a is publicly available through the following link: https://doi.org/10.6084/m9.figshare.21765299. The SVOT acquisition codes and reconstruction codes for the remaining figures are available from the corresponding author upon reasonable request.

References

  1. Kiessling, F. & Pichler, B. J. Small Animal Imaging: Basics and Practical Guide (Springer Science & Business Media, 2010).

  2. Baker, M. The whole picture. Nature 463, 977–979 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. van der Heyden, B., Roden, S., Dok, R., Nuyts, S. & Sterpin, E. Virtual monoenergetic micro-CT imaging in mice with artificial intelligence. Sci. Rep. 12, 2324 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shaker, K., Häggmark, I., Reichmann, J., Arsenian-Henriksson, M. & Hertz, H. M. Phase-contrast X-ray tomography resolves the terminal bronchioles in free-breathing mice. Commun. Phys. 4, 1–9 (2021).

    Article  Google Scholar 

  5. Qin, R. et al. Carbonized paramagnetic complexes of Mn (II) as contrast agents for precise magnetic resonance imaging of sub-millimeter-sized orthotopic tumors. Nat. Commun. 13, 1938 (2022).

    Article  Google Scholar 

  6. Zhan, S. et al. Targeting NQO1/GPX4-mediated ferroptosis by plumbagin suppresses in vitro and in vivo glioma growth. Br. J. Cancer 127, 1–13 (2022).

    Article  Google Scholar 

  7. Kim, D.-Y. et al. In vivo imaging of invasive aspergillosis with 18F-fluorodeoxysorbitol positron emission tomography. Nat. Commun. 13, 1926 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, D. et al. SARS-CoV-2 receptor binding domain radio-probe: a non-invasive approach for angiotensin-converting enzyme 2 mapping in mice. Acta Pharmacol. Sin. 43, 1–9 (2021).

    Google Scholar 

  9. Zhang, Y. et al. Augmented ultrasonography with implanted CMOS electronic motes. Nat. Commun. 13, 3521 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Heiles, B. et al. Performance benchmarking of microbubble-localization algorithms for ultrasound localization microscopy. Nat. Biomed. Eng. 6, 605–616 (2022).

    Article  PubMed  Google Scholar 

  11. Enninful, A., Baysoy, A. & Fan, R. Unmixing for ultra-high-plex fluorescence imaging. Nat. Commun. 13, 3473 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Glaser, A. K. et al. A hybrid open-top light-sheet microscope for versatile multi-scale imaging of cleared tissues. Nat. Methods 19, 613–619 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bouchard, M. B. et al. Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms. Nat. Photon. 9, 113–119 (2015).

    Article  CAS  Google Scholar 

  14. Santos‐Coquillat, A. et al. Goat milk exosomes as natural nanoparticles for detecting inflammatory processes by optical imaging. Small 18, 2105421 (2022).

    Article  Google Scholar 

  15. Beard, P. Biomedical photoacoustic imaging. Interface Focus 1, 602–631 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Manohar, S. & Razansky, D. Photoacoustics: a historical review. Adv. Opt. Photonics 8, 586–617 (2016).

    Article  Google Scholar 

  17. Das, D., Sharma, A., Rajendran, P. & Pramanik, M. Another decade of photoacoustic imaging. Phys. Med. Biol. 66, 05TR01 (2021).

    Article  Google Scholar 

  18. Deán-Ben, X. L., Gottschalk, S., Mc Larney, B., Shoham, S. & Razansky, D. Advanced optoacoustic methods for multiscale imaging of in vivo dynamics. Chem. Soc. Rev. 46, 2158–2198 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Deán‐Ben, X. L. & Razansky, D. Optoacoustic imaging of the skin. Exp. Dermatol. 30, 1598–1609 (2021).

    Article  PubMed  Google Scholar 

  20. Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kruger, R. A., Kiser, W. L. Jr, Reinecke, D. R. & Kruger, G. A. Thermoacoustic computed tomography using a conventional linear transducer array. Med. Phys. 30, 856–860 (2003).

    Article  PubMed  Google Scholar 

  22. Wang, X. et al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 21, 803–806 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Xia, J. & Wang, L. V. Small-animal whole-body photoacoustic romography: a review. IEEE Trans. Biomed. Eng. 61, 1380–1389 (2014).

    Article  PubMed  Google Scholar 

  24. Jeon, M., Kim, J. & Kim, C. Multiplane spectroscopic whole-body photoacoustic imaging of small animals in vivo. Med. Biol. Eng. Comput. 54, 283–294 (2016).

    Article  PubMed  Google Scholar 

  25. Ma, R., Taruttis, A., Ntziachristos, V. & Razansky, D. Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging. Opt. Express 17, 21414–21426 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Gateau, J., Caballero, M. Á. A., Dima, A. & Ntziachristos, V. Three‐dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole‐body tomographic system for small animals. Med. Phys. 40, 013302 (2013).

    Article  PubMed  Google Scholar 

  27. Brecht, H.-P. F. et al. Whole-body three-dimensional optoacoustic tomography system for small animals. J. Biomed. Opt. 14, 064007 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Xia, J. et al. Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo. J. Biomed. Opt. 17, 050506 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Razansky, D., Buehler, A. & Ntziachristos, V. Volumetric real-time multispectral optoacoustic tomography of biomarkers. Nat. Protoc. 6, 1121–1129 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Lv, J. et al. Hemispherical photoacoustic imaging of myocardial infarction: in vivo detection and monitoring. Eur. Radiol. 28, 2176–2183 (2018).

    Article  PubMed  Google Scholar 

  31. Gottschalk, S. et al. Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain. Nat. Biomed. Eng. 3, 392–401 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gottschalk, S., Felix Fehm, T., Luís Deán-Ben, X. & Razansky, D. Noninvasive real-time visualization of multiple cerebral hemodynamic parameters in whole mouse brains using five-dimensional optoacoustic tomography. J. Cerebr. Blood Flow. Metab. 35, 531–535 (2015).

    Article  Google Scholar 

  33. Fehm, T. F., Deán-Ben, X. L., Ford, S. J. & Razansky, D. In vivo whole-body optoacoustic scanner with real-time volumetric imaging capacity. Optica 3, 1153–1159 (2016).

    Article  Google Scholar 

  34. Deán-Ben, X. L., Fehm, T. F., Ford, S. J., Gottschalk, S. & Razansky, D. Spiral volumetric optoacoustic tomography visualizes multi-scale dynamics in mice. Light Sci. Appl. 6, e16247 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ron, A., Kalva, S. K., Periyasamy, V., Deán‐Ben, X. L. & Razansky, D. Flash scanning volumetric optoacoustic tomography for high resolution whole‐body tracking of nanoagent kinetics and biodistribution. Laser Photonics Rev. 15, 2000484 (2021).

    Article  CAS  Google Scholar 

  36. Kalva, S. K., Dean-Ben, X. L. & Razansky, D. Single-sweep volumetric optoacoustic tomography of whole mice. Photonics Res. 9, 899–908 (2021).

    Article  Google Scholar 

  37. Kalva, S. K., Sánchez-Iglesias, A., Deán-Ben, X. L., Liz-Marzán, L. M. & Razansky, D. Rapid volumetric optoacoustic tracking of nanoparticle kinetics across murine organs. ACS Appl. Mater. Interfaces 4, 172–178 (2021).

    Google Scholar 

  38. Ron, A., Deán-Ben, X. L., Gottschalk, S. & Razansky, D. Volumetric optoacoustic imaging unveils high-resolution patterns of acute and cyclic hypoxia in a murine model of breast cancer. Cancer Res. 79, 4767–4775 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Ivankovic, I. et al. Volumetric optoacoustic tomography enables non-invasive in vivo characterization of impaired heart function in hypoxic conditions. Sci. Rep. 9, 8369 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Berghen, N. et al. Radiosafe micro-computed tomography for longitudinal evaluation of murine disease models. Sci. Rep. 9, 17598 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chen, X. et al. Mapping optogenetically-driven single-vessel fMRI with concurrent neuronal calcium recordings in the rat hippocampus. Nat. Commun. 10, 5239 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhang, P. et al. A review of advances in imaging methodology in fluorescence molecular tomography. Phys. Med. Biol. 67, 10TR01 (2022).

    Article  Google Scholar 

  43. Ntziachristos, V., Ripoll, J., Wang, L. V. & Weissleder, R. Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol. 23, 313–320 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Patwardhan, S. V., Bloch, S. R., Achilefu, S. & Culver, J. P. Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice. Opt. Express 13, 2564–2577 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Hu, P., Li, L., Lin, L. & Wang, L. V. Spatiotemporal antialiasing in photoacoustic computed tomography. IEEE Trans. Med. Imaging 39, 3535–3547 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rockwell, B., Thomas, R. & Zimmerman, S. in International Laser Safety Conference. 75–77 (Laser Institute of America, 2015).

  47. Dean-Ben, X. L. & Razansky, D. Portable spherical array probe for volumetric real-time optoacoustic imaging at centimeter-scale depths. Opt. Express 21, 28062–28071 (2013).

    Article  PubMed  Google Scholar 

  48. Dean-Ben, X. L., Ozbek, A. & Razansky, D. Volumetric real-time tracking of peripheral human vasculature with GPU-accelerated three-dimensional optoacoustic tomography. IEEE Trans. Med. Imaging 32, 2050–2055 (2013).

    Article  PubMed  Google Scholar 

  49. Deán-Ben, X. L., Özbek, A. & Razansky, D. Accounting for speed of sound variations in volumetric hand-held optoacoustic imaging. Front. Optoelectron. 10, 280–286 (2017).

    Article  Google Scholar 

  50. Szabo, T. L. Diagnostic Ultrasound Imaging: Inside Out (Academic Press, 2004).

  51. Ron, A., Davoudi, N., Deán-Ben, X. L. & Razansky, D. Self-gated respiratory motion rejection for optoacoustic tomography. Appl. Sci. 9, 2737 (2019).

    Article  Google Scholar 

  52. Dean-Ben, X. L., Ford, S. J. & Razansky, D. High-frame rate four dimensional optoacoustic tomography enables visualization of cardiovascular dynamics and mouse heart perfusion. Sci. Rep. 5, 10133 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Merčep, E., Burton, N. C., Claussen, J. & Razansky, D. Whole-body live mouse imaging by hybrid reflection-mode ultrasound and optoacoustic tomography. Opt. Lett. 40, 4643–4646 (2015).

    Article  PubMed  Google Scholar 

  54. Lutzweiler, C. & Razansky, D. Optoacoustic imaging and tomography: reconstruction approaches and outstanding challenges in image performance and quantification. Sensors 13, 7345–7384 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chen, Z. et al. Simultaneous functional magnetic resonance and optoacoustic imaging of brain‐wide sensory responses in mice. Adv. Sci. 10, e2205191 (2022).

    Article  Google Scholar 

  56. Lin, H.-C. A. et al. Characterization of cardiac dynamics in an acute myocardial infarction model by four-dimensional optoacoustic and magnetic resonance imaging. Theranostics 7, 4470 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Swiss National Science Foundation (grant 310030_192757) and the European Research Council (grant ERC-2015-CoG-682379).

Author information

Authors and Affiliations

Authors

Contributions

S.K.K., X.L.D.-B. and D.R. designed the imaging system and experiments. S.K.K. performed the experiments and analyzed the data. X.L.D.-B. provided reconstruction algorithms and assisted in data analysis. M.R. assisted in animal preparation and handling. D.R. supervised the study. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Daniel Razansky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Miya Ishihara, Yash Mantri and Kanyi Pu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Kalva, S. K. et al. ACS Appl. Mater. Interfaces 14, 172–178 (2022): https://doi.org/10.1021/acsami.1c17661

Ron, A. et al. Laser Phot. Rev. 15, 2000484 (2021): https://doi.org/10.1002/lpor.202000484

Deán-Ben, X. L. et al. Light Sci. Appl. 6, e16247 (2017): https://doi.org/10.1038/lsa.2016.247

Supplementary information

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalva, S.K., Deán-Ben, X.L., Reiss, M. et al. Spiral volumetric optoacoustic tomography for imaging whole-body biodynamics in small animals. Nat Protoc 18, 2124–2142 (2023). https://doi.org/10.1038/s41596-023-00834-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00834-7

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing