Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Spatial- and Fourier-domain ptychography for high-throughput bio-imaging

Abstract

First envisioned for determining crystalline structures, ptychography has become a useful imaging tool for microscopists. However, ptychography remains underused by biomedical researchers due to its limited resolution and throughput in the visible light regime. Recent developments of spatial- and Fourier-domain ptychography have successfully addressed these issues and now offer the potential for high-resolution, high-throughput optical imaging with minimal hardware modifications to existing microscopy setups, often providing an excellent trade-off between resolution and field of view inherent to conventional imaging systems, giving biomedical researchers the best of both worlds. Here, we provide extensive information to enable the implementation of ptychography by biomedical researchers in the visible light regime. We first discuss the intrinsic connections between spatial-domain coded ptychography and Fourier ptychography. A step-by-step guide then provides the user instructions for developing both systems with practical examples. In the spatial-domain implementation, we explain how a large-scale, high-performance blood-cell lens can be made at negligible expense. In the Fourier-domain implementation, we explain how adding a low-cost light source to a regular microscope can improve the resolution beyond the limit of the objective lens. The turnkey operation of these setups is suitable for use by professional research laboratories, as well as citizen scientists. Users with basic experience in optics and programming can build the setups within a week. The do-it-yourself nature of the setups also allows these procedures to be implemented in laboratory courses related to Fourier optics, biomedical instrumentation, digital image processing, robotics and capstone projects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The modern form of ptychography.
Fig. 2: Spatial-domain CP and FP.
Fig. 3: Overview of Procedures 1 and 2 for developing the FP and CP platforms.
Fig. 4: Incident angle calibration and alignment for FP.
Fig. 5: Hardware implementation of FP.
Fig. 6: Reconstruction process of FP.
Fig. 7: Hardware implementation of CP.
Fig. 8: Tracking the motion of the coded sensor in CP.
Fig. 9: Reconstruction process of CP.
Fig. 10: Stage assembling process for CP.
Fig. 11: System integration for CP.
Fig. 12: Troubleshooting for FP.
Fig. 13: Troubleshooting for CP.
Fig. 14: Reconstructions with precalibrated ptychographic probes versus blind reconstructions.
Fig. 15: Representative imaging results using FP.
Fig. 16: Imaging fixed biospecimens using CP.
Fig. 17: Time-lapse monitoring of live cells using lensless CP.

Similar content being viewed by others

Data availability

The main data supporting this study are available within the article, Supplementary Data and the primary supporting study10,11,14. Experimental datasets for both setups in this study are available in Zenodo: https://doi.org/10.5281/zenodo.7492626.

Code availability

All related MATLAB and Arduino code is provided in Supplementary Software. Additional code for testing experimental datasets is available in Zenodo: https://doi.org/10.5281/zenodo.7492626.

References

  1. Sayre, D. Some implications of a theorem due to Shannon. Acta Crystallogr. 5, 843–843 (1952).

    Article  Google Scholar 

  2. Hoppe, W. Diffraction in inhomogeneous primary wave fields. 1. Principle of phase determination from electron diffraction interference. Acta Crystallogr 25, 495–501 (1969).

    Article  Google Scholar 

  3. Guizar-Sicairos, M. & Thibault, P. Ptychography: a solution to the phase problem. Phys. Today 74, 42–48 (2021).

    Article  Google Scholar 

  4. Faulkner, H. M. L. & Rodenburg, J. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm. Phys. Rev. Lett. 93, 023903 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Rodenburg, J. & Maiden, A. in Springer Handbook of Microscopy 819–904 (Springer, 2019).

  6. Wang, T. et al. Optical ptychography for biomedical imaging: recent progress and future directions. Biomed. Opt. Express 14, 489–532 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Loetgering, L., Witte, S. & Rothhardt, J. Advances in laboratory-scale ptychography using high harmonic sources. Opt. Express 30, 4133–4164 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Pfeiffer, F. X-ray ptychography. Nat. Photonics 12, 9–17 (2018).

    Article  CAS  Google Scholar 

  9. Jiang, Y. et al. Electron ptychography of 2D materials to deep sub-ångström resolution. Nature 559, 343–349 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Zheng, G., Horstmeyer, R. & Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics 7, 739 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang, S. et al. Resolution-enhanced parallel coded ptychography for high-throughput optical imaging. ACS Photonics 8, 3261–3271 (2021).

    Article  CAS  Google Scholar 

  12. Jiang, S. et al. High-throughput digital pathology via a handheld, multiplexed, and AI-powered ptychographic whole slide scanner. Lab Chip 22, 2657–2670 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Jiang, S. et al. Blood-coated sensor for high-throughput ptychographic cytometry on a Blu-ray disc. ACS Sens. 7, 1058–1067 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Jiang, S. et al. Ptychographic sensor for large-scale lensless microbial monitoring with high spatiotemporal resolution. Biosens. Bioelectron. 196, 113699 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Zheng, G., Shen, C., Jiang, S., Song, P. & Yang, C. Concept, implementations and applications of Fourier ptychography. Nat. Rev. Phys. 3, 207–223 (2021).

    Article  Google Scholar 

  16. Pan, A., Zuo, C. & Yao, B. High-resolution and large field-of-view Fourier ptychographic microscopy and its applications in biomedicine. Rep. Prog. Phys. 83, 096101 (2020).

    Article  PubMed  Google Scholar 

  17. Konda, P. C. et al. Fourier ptychography: current applications and future promises. Opt. Express 28, 9603–9630 (2020).

    Article  PubMed  Google Scholar 

  18. Guo, K., Dong, S. & Zheng, G. Fourier ptychography for brightfield, phase, darkfield, reflective, multi-slice, and fluorescence imaging. IEEE J. Sel. Top. Quantum Electron. 22, 77–88 (2015).

    Article  Google Scholar 

  19. Horstmeyer, R., Chung, J., Ou, X., Zheng, G. & Yang, C. Diffraction tomography with Fourier ptychography. Optica 3, 827–835 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zuo, C., Sun, J., Li, J., Asundi, A. & Chen, Q. Wide-field high-resolution 3D microscopy with Fourier ptychographic diffraction tomography. Opt. Lasers Eng. 128, 106003 (2020).

    Article  Google Scholar 

  21. Dong, S. et al. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging. Opt. Express 22, 13586–13599 (2014).

    Article  PubMed  Google Scholar 

  22. Holloway, J., Wu, Y., Sharma, M. K., Cossairt, O. & Veeraraghavan, A. SAVI: synthetic apertures for long-range, subdiffraction-limited visible imaging using Fourier ptychography. Sci. Adv. 3, e1602564 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang, H. et al. Near-field Fourier ptychography: super-resolution phase retrieval via speckle illumination. Opt. Express 27, 7498–7512 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Xiang, M. et al. Coherent synthetic aperture imaging for visible remote sensing via reflective Fourier ptychography. Opt. Lett. 46, 29–32 (2021).

    Article  PubMed  Google Scholar 

  25. Wakonig, K. et al. X-ray Fourier ptychography. Sci. Adv. 5, eaav0282 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang, F., Pedrini, G. & Osten, W. Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation. Phys. Rev. A 75, 043805 (2007).

    Article  Google Scholar 

  27. Maiden, A. M., Rodenburg, J. M. & Humphry, M. J. Optical ptychography: a practical implementation with useful resolution. Opt. Lett. 35, 2585–2587 (2010).

    Article  PubMed  Google Scholar 

  28. Song, P. et al. Super-resolution microscopy via ptychographic structured modulation of a diffuser. Opt. Lett. 44, 3645–3648 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Thibault, P. & Menzel, A. Reconstructing state mixtures from diffraction measurements. Nature 494, 68–71 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Batey, D. J., Claus, D. & Rodenburg, J. M. Information multiplexing in ptychography. Ultramicroscopy 138, 13–21 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Song, P. et al. Super-resolved multispectral lensless microscopy via angle-tilted, wavelength-multiplexed ptychographic modulation. Opt. Lett. 45, 3486–3489 (2020).

    Article  PubMed  Google Scholar 

  32. Thibault, P., Dierolf, M., Bunk, O., Menzel, A. & Pfeiffer, F. Probe retrieval in ptychographic coherent diffractive imaging. Ultramicroscopy 109, 338–343 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Guizar-Sicairos, M. & Fienup, J. R. Phase retrieval with transverse translation diversity: a nonlinear optimization approach. Opt. Express 16, 7264–7278 (2008).

    Article  PubMed  Google Scholar 

  34. Maiden, A. M. & Rodenburg, J. M. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109, 1256–1262 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Ou, X., Zheng, G. & Yang, C. Embedded pupil function recovery for Fourier ptychographic microscopy. Opt. Express 22, 4960–4972 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Song, P. et al. Full-field Fourier ptychography (FFP): spatially varying pupil modeling and its application for rapid field-dependent aberration metrology. APL Photonics 4, 050802 (2019).

    Article  Google Scholar 

  37. Gustafsson, M. G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Liang, M. & Yang, C. Implementation of free-space Fourier ptychography with near maximum system numerical aperture. Opt. Express 30, 20321–20332 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Schiske, P. Image reconstruction by means of focus series. In Proc. 4th European Conference on Electron Microscopy, Rome, Italy (Tipografia poliglotta, 1968).

  40. Bao, P., Zhang, F., Pedrini, G. & Osten, W. Phase retrieval using multiple illumination wavelengths. Opt. Lett. 33, 309–311 (2008).

    Article  PubMed  Google Scholar 

  41. Greenbaum, A. & Ozcan, A. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy. Opt. Express 20, 3129–3143 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Luo, W., Zhang, Y., Feizi, A., Göröcs, Z. & Ozcan, A. Pixel super-resolution using wavelength scanning. Light Sci. Appl. 5, e16060–e16060 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zuo, C. et al. Transport of intensity equation: a tutorial. Opt. Lasers Eng. 135, 106187 (2020).

    Article  Google Scholar 

  44. Fienup, J. R. Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982).

    Article  CAS  PubMed  Google Scholar 

  45. Bishara, W., Su, T.-W., Coskun, A. F. & Ozcan, A. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution. Opt. Express 18, 11181–11191 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Xu, W., Jericho, M., Meinertzhagen, I. & Kreuzer, H. Digital in-line holography for biological applications. Proc. Natl Acad. Sci. USA 98, 11301–11305 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guo, C. et al. Quantitative multi-height phase retrieval via a coded image sensor. Biomed. Opt. Express 12, 7173–7184 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Abels, E. & Pantanowitz, L. Current state of the regulatory trajectory for whole slide imaging devices in the USA. J. Pathol. Inform. 8, 23 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bian, Z. et al. Autofocusing technologies for whole slide imaging and automated microscopy. J. Biophotonics 13, e202000227 (2020).

    Article  PubMed  Google Scholar 

  50. Wang, T. et al. Remote referencing strategy for high-resolution coded ptychographic imaging. Opt. Lett. 48, 485–488 (2023).

    Article  PubMed  Google Scholar 

  51. Chan, A. C. et al. Parallel Fourier ptychographic microscopy for high-throughput screening with 96 cameras (96 eyes). Sci. Rep. 9, 1–12 (2019).

    Article  Google Scholar 

  52. Wakefield, D. L. et al. Cellular analysis using label-free parallel array microscopy with Fourier ptychography. Biomed. Opt. Express 13, 1312–1327 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Li, P. & Maiden, A. Lensless LED matrix ptychographic microscope: problems and solutions. Appl. Opt. 57, 1800–1806 (2018).

    Article  PubMed  Google Scholar 

  54. Shu, Y. et al. Adaptive optical quantitative phase imaging based on annular illumination Fourier ptychographic microscopy. PhotoniX 3, 1–15 (2022).

    Google Scholar 

  55. Horstmeyer, R., Ou, X., Zheng, G., Willems, P. & Yang, C. Digital pathology with Fourier ptychography. Comput. Med. Imaging Graph. 42, 38–43 (2015).

    Article  PubMed  Google Scholar 

  56. Williams, A. J. et al. Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis. J. Biomed. Opt. 19, 066007 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chen, J. et al. Rapid full-color Fourier ptychographic microscopy via spatially filtered color transfer. Photonics Res. 10, 2410–2421 (2022).

    Article  Google Scholar 

  58. Ou, X., Horstmeyer, R., Yang, C. & Zheng, G. Quantitative phase imaging via Fourier ptychographic microscopy. Opt. Lett. 38, 4845–4848 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jiang, S. et al. Wide-field, high-resolution lensless on-chip microscopy via near-field blind ptychographic modulation. Lab Chip 20, 1058–1065 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Sun, J., Zuo, C., Zhang, J., Fan, Y. & Chen, Q. High-speed Fourier ptychographic microscopy based on programmable annular illuminations. Sci. Rep. 8, 1–12 (2018).

    Google Scholar 

  61. Tian, L. et al. Computational illumination for high-speed in vitro Fourier ptychographic microscopy. Optica 2, 904–911 (2015).

    Article  CAS  Google Scholar 

  62. Chowdhury, S. et al. High-resolution 3D refractive index microscopy of multiple-scattering samples from intensity images. Optica 6, 1211–1219 (2019).

    Article  CAS  Google Scholar 

  63. Guo, C. et al. Depth-multiplexed ptychographic microscopy for high-throughput imaging of stacked bio-specimens on a chip. Biosens. Bioelectron. 224, 115049 (2023).

    Article  CAS  PubMed  Google Scholar 

  64. Chung, J., Ou, X., Kulkarni, R. P. & Yang, C. Counting white blood cells from a blood smear using Fourier ptychographic microscopy. PloS ONE 10, e0133489 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Song, P. et al. Optofluidic ptychography on a chip. Lab Chip 21, 4549–4556 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Maiden, A. M., Humphry, M. J. & Rodenburg, J. Ptychographic transmission microscopy in three dimensions using a multi-slice approach. J. Opt. Soc. Am. A 29, 1606–1614 (2012).

    Article  CAS  Google Scholar 

  67. Dong, S., Nanda, P., Shiradkar, R., Guo, K. & Zheng, G. High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography. Opt. Express 22, 20856–20870 (2014).

    Article  PubMed  Google Scholar 

  68. Guo, K. et al. 13-fold resolution gain through turbid layer via translated unknown speckle illumination. Biomed. Opt. Express 9, 260–275 (2018).

    Article  PubMed  Google Scholar 

  69. Yeh, L.-H., Chowdhury, S. & Waller, L. Computational structured illumination for high-content fluorescence and phase microscopy. Biomed. Opt. Express 10, 1978–1998 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Dong, S., Nanda, P., Guo, K., Liao, J. & Zheng, G. Incoherent Fourier ptychographic photography using structured light. Photonics Res. 3, 19–23 (2015).

    Article  Google Scholar 

  71. Ou, X., Horstmeyer, R., Zheng, G. & Yang, C. High numerical aperture Fourier ptychography: principle, implementation and characterization. Opt. Express 23, 3472–3491 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sun, J., Zuo, C., Zhang, L. & Chen, Q. Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations. Sci. Rep. 7, 1–11 (2017).

    Google Scholar 

  73. Zheng, G. Fourier Ptychographic Imaging: A Matlab Tutorial (Morgan & Claypool Publishers, 2016).

  74. Phillips, Z. F., Eckert, R. & Waller, L. Quasi-dome: a self-calibrated high-NA LED illuminator for Fourier ptychography. In Imaging Systems and Applications (Optica Publishing Group, 2017).

  75. Pan, A. et al. Subwavelength resolution Fourier ptychography with hemispherical digital condensers. Opt. Express 26, 23119–23131 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Guo, K., Dong, S., Nanda, P. & Zheng, G. Optimization of sampling pattern and the design of Fourier ptychographic illuminator. Opt. Express 23, 6171–6180 (2015).

    Article  PubMed  Google Scholar 

  77. Yeh, L.-H. et al. Experimental robustness of Fourier ptychography phase retrieval algorithms. Opt. Express 23, 33214–33240 (2015).

    Article  PubMed  Google Scholar 

  78. Maiden, A., Johnson, D. & Li, P. Further improvements to the ptychographical iterative engine. Optica 4, 736–745 (2017).

    Article  Google Scholar 

  79. Bian, Z., Dong, S. & Zheng, G. Adaptive system correction for robust Fourier ptychographic imaging. Opt. Express 21, 32400–32410 (2013).

    Article  PubMed  Google Scholar 

  80. Yang, L., Liu, Z., Zheng, G. & Chang, H. Batch-based alternating direction methods of multipliers for Fourier ptychography. Opt. Express 30, 34750–34764 (2022).

    Article  PubMed  Google Scholar 

  81. Dong, S., Shiradkar, R., Nanda, P. & Zheng, G. Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging. Biomed. Opt. Express 5, 1757–1767 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Song, P. et al. Synthetic aperture ptychography: coded sensor translation for joint spatial-Fourier bandwidth expansion. Photonics Res. 10, 1624–1632 (2022).

    Article  Google Scholar 

  83. Guizar-Sicairos, M., Thurman, S. T. & Fienup, J. R. Efficient subpixel image registration algorithms. Opt. Lett. 33, 156–158 (2008).

    Article  PubMed  Google Scholar 

  84. Bian, L. et al. Content adaptive illumination for Fourier ptychography. Opt. Lett. 39, 6648–6651 (2014).

    Article  PubMed  Google Scholar 

  85. Tian, L., Li, X., Ramchandran, K. & Waller, L. Multiplexed coded illumination for Fourier Ptychography with an LED array microscope. Biomed. Opt. Express 5, 2376–2389 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Fan, Y. et al. Efficient synthetic aperture for phaseless Fourier ptychographic microscopy with hybrid coherent and incoherent illumination. Laser Photonics Rev. 17, 2200201 (2023).

    Article  Google Scholar 

  87. Dong, S., Bian, Z., Shiradkar, R. & Zheng, G. Sparsely sampled Fourier ptychography. Opt. Express 22, 5455–5464 (2014).

    Article  PubMed  Google Scholar 

  88. Song, P. et al. Freeform illuminator for computational microscopy. Intell. Comput. 2, 0015 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Z. Bian and A. Pirhanov for their assistance in sample preparation. This work was partially supported by the UConn SPARK grant, UConn Research Excellence Program, National Science Foundation award 2012140 and National Institute of Health award U01-NS113873. P.S. also acknowledges the support of the Thermo Fisher Scientific Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

G.Z. conceived the project. S.J., P.S. and G.Z. designed the pipeline. S.J., P.S., T.W. and G.Z. developed the prototype systems and prepared the display items. S.J., P.S., T.W. and L.Y. developed the data acquisition and processing pipelines for the protocol. T.W. and C.G. prepared all SolidWorks design files for the protocols. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Guoan Zheng.

Ethics declarations

Competing interests

G.Z. is a named inventor on the following patents related to Fourier ptychography (US Patent, nos. 9,817,224, 9,864,184, 9,497,379) and coded ptychography (US Patent, no. 11,487,099).

Peer review

Peer review information

Nature Protocols thanks Zhengjun Liu, Fucai Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Zheng, G. et al. Nat. Photonics 7, 739-745 (2013): https://doi.org/10.1038/nphoton.2013.187

Jiang, S. et al. ACS Photonics 8, 3261-3271 (2021): https://doi.org/10.1021/acsphotonics.1c01085

Jiang, S. et al. Biosens. Bioelectron. 196, 113699 (2022): https://doi.org/10.1016/j.bios.2021.113699

Supplementary information

Supplementary Information

Supplementary Figs. 1–4.

Reporting Summary

Supplementary Software 1

MATLAB code and Arduino code for FP and CP.

Supplementary Data 1

SolidWorks design files for FP and CP.

Supplementary Video 1

Operation of the FP platform.

Supplementary Video 2

Operation of the CP platform.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Song, P., Wang, T. et al. Spatial- and Fourier-domain ptychography for high-throughput bio-imaging. Nat Protoc 18, 2051–2083 (2023). https://doi.org/10.1038/s41596-023-00829-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00829-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing