Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol Extension
  • Published:

An operant social self-administration and choice model in mice

Abstract

Little is known about how social factors contribute to neurobiology or neuropsychiatric disorders. The use of mice allows one to probe the neurobiological bases of social interaction, offering the genetic diversity and versatility to identify cell types and neural circuits of social behavior. However, mice typically show lower social motivation compared with rats, leading to the question of whether mice should be used to model complex social behaviors displayed by humans. Studies on mouse social behavior often rely on measures such as time spent in contact with a social partner or preference for a social-paired context, but fail to assess volitional (subject-controlled) rewarding social interaction. Here, we describe a volitional social self-administration and choice model that is an extension of our previous work on rats. Using mice, we systematically compared female adolescent and adult C57BL/6 mice and outbred CD1 mice, showing that operant social self-administration, social seeking during periods of isolation and choice of social interaction over palatable food is significantly stronger in female CD1 mice than in female C57BL/6J mice, independently of age. We describe the requirements for building the social self-administration and choice apparatus and we provide guidance for studying the role of operant social reward in mice. We also discuss its use to study brain mechanisms of operant social reward, potentially extending its application to mouse models of neuropsychiatric disorders. The training commonly requires ~4 weeks for stable social self-administration and 3–4 additional weeks for tests, including social seeking and choice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Social-choice self-administration apparatus.
Fig. 2: Protocol timeline.
Fig. 3: Testing strain and age effects on volitional social interaction in female mice.
Fig. 4: Testing the preference for social interaction versus palatable food.
Fig. 5: Testing the effect of housing conditions on volitional social interaction in female mice.
Fig. 6: Testing activity-dependent neuronal ensembles involved in volitional social interaction using FosGFP × CD1 transgenic hybrid mice.

Similar content being viewed by others

Data availability

The main data discussed in this protocol are available in the supporting primary research paper (https://doi.org/10.1016/j.biopsych.2021.10.023)

Code availability

The Med-Associates programs are available upon request of the corresponding authors (L.A.R. and M.V.). Files necessary for 3D printing the partner chamber are provided in the Supplementary Software.

References

  1. Heilig, M., Epstein, D. H., Nader, M. A. & Shaham, Y. Time to connect: bringing social context into addiction neuroscience. Nat. Rev. Neurosci. 17, 592–599 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vanderschuren, L. J., Achterberg, E. J. & Trezza, V. The neurobiology of social play and its rewarding value in rats. Neurosci. Biobehav. Rev. 70, 86–105 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yizhar, O. & Levy, D. R. The social dilemma: prefrontal control of mammalian sociability. Curr. Opin. Neurobiol. 68, 67–75 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Venniro, M., Banks, M. L., Heilig, M., Epstein, D. H. & Shaham, Y. Improving translation of animal models of addiction and relapse by reverse translation. Nat. Rev. Neurosci. 21, 625–643 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Venniro, M., Russell, T. I., Zhang, M. & Shaham, Y. Operant social reward decreases incubation of heroin craving in male and female rats. Biol. Psychiatry 86, 848–856 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Venniro, M. & Shaham, Y. An operant social self-administration and choice model in rats. Nat. Protoc. 15, 1542–1559 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Venniro, M. et al. Volitional social interaction prevents drug addiction in rat models. Nat. Neurosci. 21, 1520–1529 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Venniro, M., Panlilio, L. V., Epstein, D. H. & Shaham, Y. The protective effect of operant social reward on cocaine self-administration, choice, and relapse is dependent on delay and effort for the social reward. Neuropsychopharmacology https://doi.org/10.1038/s41386-021-01148-6 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Venniro, M. et al. Abstinence-dependent dissociable central amygdala microcircuits control drug craving. Proc. Natl Acad. Sci. USA 117, 8126–8134 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ellenbroek, B. & Youn, J. Rodent models in neuroscience research: is it a rat race? Dis. Model Mech. 9, 1079–1087 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dolen, G., Darvishzadeh, A., Huang, K. W. & Malenka, R. C. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 501, 179–184 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Felix-Ortiz, A. C. & Tye, K. M. Amygdala inputs to the ventral hippocampus bidirectionally modulate social behavior. J. Neurosci. 34, 586–595 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gunaydin, L. A. et al. Natural neural projection dynamics underlying social behavior. Cell 157, 1535–1551 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Levy, D. R. et al. Dynamics of social representation in the mouse prefrontal cortex. Nat. Neurosci. 22, 2013–2022 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Nardou, R. et al. Oxytocin-dependent reopening of a social reward learning critical period with MDMA. Nature 569, 116–120 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Wei, D. et al. Endocannabinoid signaling mediates oxytocin-driven social reward. Proc. Natl Acad. Sci. USA 112, 14084–14089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171–178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Netser, S. et al. Distinct dynamics of social motivation drive differential social behavior in laboratory rat and mouse strains. Nat. Commun. 11, 5908 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Poole, T. B. & Fish, J. An investigation of playful behaviour in Rattus norvegicus and Mus musculus (Mammalia). J. Zool. Soc. Lond. 175, 61–71 (1975).

    Article  Google Scholar 

  20. Trezza, V., Campolongo, P. & Vanderschuren, L. J. Evaluating the rewarding nature of social interactions in laboratory animals. Dev. Cogn. Neurosci. 1, 444–458 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hu, R. K. et al. An amygdala-to-hypothalamus circuit for social reward. Nat. Neurosci. https://doi.org/10.1038/s41593-021-00828-2 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Martin, L. & Iceberg, E. Quantifying social motivation in mice using operant conditioning. J. Vis. Exp. https://doi.org/10.3791/53009 (2015).

  23. Brodkin, E. S., Hagemann, A., Nemetski, S. M. & Silver, L. M. Social approach-avoidance behavior of inbred mouse strains towards DBA/2 mice. Brain Res. 1002, 151–157 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Panksepp, J. B. et al. Affiliative behavior, ultrasonic communication and social reward are influenced by genetic variation in adolescent mice. PLoS ONE 2, e351 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Panksepp, J. B. & Lahvis, G. P. Social reward among juvenile mice. Genes Brain Behav. 6, 661–671 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Golden, S. A. et al. Compulsive addiction-like aggressive behavior in mice. Biol. Psychiatry 82, 239–248 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Golden, S. A. et al. Nucleus accumbens Drd1-expressing neurons control aggression self-administration and aggression seeking in mice. J. Neurosci. 39, 2482–2496 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aleyasin, H. et al. Cell-type-specific role of DeltaFosB in nucleus accumbens in modulating intermale aggression. J. Neurosci. 38, 5913–5924 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ramsey, L. A., Holloman, F. M., Hope, B. T., Shaham, Y. & Venniro, M. Waving through the window: A model of volitional social interaction in female mice. Biol. Psychiatry https://doi.org/10.1016/j.biopsych.2021.10.023 (2022).

  30. Miczek, K. A., Maxson, S. C., Fish, E. W. & Faccidomo, S. Aggressive behavioral phenotypes in mice. Behav. Brain Res. 125, 167–181 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Cann, C., Venniro, M., Hope, B. T. & Ramsey, L. A. Parametric investigation of social place preference in adolescent mice. Behav. Neurosci. 134, 435–443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kummer, K. K. et al. Differences in social interaction- vs. cocaine reward in mouse vs. rat. Front. Behav. Neurosci. 8, 363 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pierce, R. C., Crawford, C. A., Nonneman, A. J., Mattingly, B. A. & Bardo, M. T. Effect of forebrain dopamine depletion on novelty-induced place preference behavior in rats. Pharmacol. Biochem. Behav. 36, 321–325 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Joel, D. & McCarthy, M. M. Incorporating sex as a biological variable in neuropsychiatric research: where are we now and where should we be? Neuropsychopharmacology 42, 379–385 (2017).

    Article  PubMed  Google Scholar 

  35. Beery, A. K. & Zucker, I. Sex bias in neuroscience and biomedical research. Neurosci. Biobehav. Rev. 35, 565–572 (2011).

    Article  PubMed  Google Scholar 

  36. Hughes, R. N. Sex does matter: comments on the prevalence of male-only investigations of drug effects on rodent behaviour. Behav. Pharmacol. 18, 583–589 (2007).

    Article  PubMed  Google Scholar 

  37. Golden, S. A. & Shaham, Y. Aggression addiction and relapse: a new frontier in psychiatry. Neuropsychopharmacology 43, 224–225 (2018).

    Article  PubMed  Google Scholar 

  38. Richardson, N. R. & Roberts, D. C. Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy. J. Neurosci. Methods 66, 1–11 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Venniro, M., Caprioli, D. & Shaham, Y. Animal models of drug relapse and craving: from drug priming-induced reinstatement to incubation of craving after voluntary abstinence. Prog. Brain Res. 224, 25–52 (2016).

    Article  PubMed  Google Scholar 

  40. Shalev, U., Grimm, J. W. & Shaham, Y. Neurobiology of relapse to heroin and cocaine seeking: a review. Pharmacol. Rev. 54, 1–42 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Venniro, M. et al. Factors modulating the incubation of drug and non-drug craving and their clinical implications. Neurosci. Biobehav. Rev. 131, 847–864 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Hart for his help with 3D printing. We thank F. Vautier and the NIDA Transgenic Breeding Facility for assistance in breeding the FosGFP × CD1 hybrid mice. We thank Drs. Y. Shaham and B. Hope for input and support in developing the model. The research was supported by the NIDA Intramural Research Program (L.A.R.), a grant from NIDA (DA047976) (M.V.) and a BBRF Young Investigator Grant Award (28897; M.V.).

Author information

Authors and Affiliations

Authors

Contributions

L.A.R., F.M.H., S.S.L. and M.V. contributed to various aspects of the study, including the design and performance of the research and the writing of the paper.

Corresponding authors

Correspondence to Leslie A. Ramsey or Marco Venniro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Loren Martin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Ramsey, L. A. et al. Biol. Psychiatry 91, 988–997 (2022): https://doi.org/10.1016/j.biopsych.2021.10.023

Venniro, M. & Shaham, Y. Nat. Prot. 15, 1542–1559 (2020): https://doi.org/10.1038/s41596-020-0296-6

This protocol is an extension to: Nat. Protoc. 15, 1542–1559 (2020): https://doi.org/10.1038/s41596-020-0296-6

Supplementary information

Supplementary Software 1

Design file template for partner chamber (Partner chamber.stl). 2. Design file template for partner door (Partner door.stl). 3. Design file template for bedding box (bedding box partner chamber.stl). 4. Design file template for bedding box [modifiable] (bedding box partner chamber.gcode). 5. Design file template for partner chamber door [modifiable] (Door partner chamber 1 box.form). 6. Design file template for Partner chamber door [modifiable] (Door partner chamber 3 box.form).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramsey, L.A., Holloman, F.M., Lee, S.S. et al. An operant social self-administration and choice model in mice. Nat Protoc 18, 1669–1686 (2023). https://doi.org/10.1038/s41596-023-00813-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00813-y

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing