Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol Extension
  • Published:

A dynamic DNA tetrahedron framework for active targeting

Abstract

An active targeting strategy-enabled DNA tetrahedron delivery vehicle could facilitate stable drug encapsulation and stimuli-responsive on-demand release, building a universal platform for different drug delivery requirements. Owing to the excellent biocompatible nature, programmability and remarkable cell and tissue permeability, the tetrahedral DNA nanostructure (TDN) has proven its value in the delivery of various bioactive molecules. We previously described this as a static multifunctional complex in our earlier protocol. However, static structures and passive targeting behavior might introduce off-target effects under complicated biological conditions. Therefore, in this Protocol Extension, we present a major update of the TDN delivery vehicle enabling an active targeting strategy to be used for stimuli-sensitive conformation changes and on-site cargo release, which could avoid drawbacks, including complex and time-consuming fabrication processes and undetermined cell penetration ability of other DNA-based delivery vehicles. Upon exquisite design of TDN size based on cargo type, one-pot annealing is applied to fabricate the Tiamat-designed TDN exoskeleton. Then the design of the dynamic DNA apparatus can be based on the target and environmental stimuli, including DNA strand hybridization-based and pH-sensitive DNA apparatus, and careful titration of strand lengths and mismatches is achieved using polyacrylamide and agarose gel electrophoresis, or fluorophore modifications. Finally, cargo loading strategies are designed, including site and stand titration and cargo encapsulation verification. The dynamic structures show promising targetability and effectiveness in antitumor and anti-inflammatory treatment in vitro and in vivo. Assembly and characterization in the lab takes ~5 d, and the timing for the verification of biostability and biological applications depends on the uses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The design of the DNA tetrahedron capable of active targeting.
Fig. 2: TDN exoskeleton design and functional modifications.
Fig. 3: Illustration of two dynamic DNA apparatus candidates.
Fig. 4: Titration of pH-sensitive DNA apparatus design.
Fig. 5: Peptide loading design: loading site titration.
Fig. 6: Nucleic acid drug loading design.

Similar content being viewed by others

Data availability

The main data supporting the examples of this protocol are available in the supporting primary research papers17,18 Additional data can be obtained from the corresponding author upon reasonable request.

References

  1. Seeman, N. C. Nucleic acid nanostructures and topology. Angew. Chem. Int. Ed. Engl. 37, 3220–3238 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Zhu, J. et al. antiepilepticus effects of tetrahedral framework nucleic acid via inhibition of gliosis-induced downregulation of glutamine synthetase and increased AMPAR internalization in the postsynaptic membrane. Nano Lett. 22, 2381–2390 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Wang, Y. et al. Tetrahedral framework nucleic acids can alleviate taurocholate-induced severe acute pancreatitis and its subsequent multiorgan injury in mice. Nano Lett. 22, 1759–1768 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Yan, J. et al. Redox-responsive polyethyleneimine/tetrahedron DNA/doxorubicin nanocomplexes for deep cell/tissue penetration to overcome multidrug resistance. J. Control. Release 329, 36–49 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, T. et al. Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment. Nat. Protoc. 15, 2728–2757 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, Y. et al. Inhibiting methicillin-resistant Staphylococcus aureus by tetrahedral DNA nanostructure-enabled antisense peptide nucleic acid delivery. Nano Lett. 18, 5652–5659 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Ma, W. et al. An intelligent DNA nanorobot with in vitro enhanced protein lysosomal degradation of HER2. Nano Lett. 19, 4505–4517 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Li, S. et al. Bioswitchable delivery of microRNA by framework nucleic acids: application to bone regeneration. Small 17, e2104359 (2021).

    Article  PubMed  Google Scholar 

  9. Zhang, X. et al. Tetrahedral-framework nucleic acids carry small interfering RNA to downregulate toll-like receptor 2 gene expression for the treatment of sepsis. ACS Appl. Mater. Interfaces 14, 6442–6452 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Li, J. et al. Modulation of the crosstalk between Schwann cells and macrophages for nerve regeneration: a therapeutic strategy based on a multifunctional tetrahedral framework nucleic acids system. Adv. Mater. 28, 2202513 (2022).

  11. Ma, W. et al. Biomimetic nanoerythrosome-coated aptamer–DNA tetrahedron/maytansine conjugates: pH-responsive and targeted cytotoxicity for HER2-positive breast cancer. Adv. Mater. 34, 2109609 (2022).

  12. Fu, W. et al. Therapeutic siCCR2 loaded by tetrahedral framework DNA nanorobotics in therapy for intracranial hemorrhage. Adv. Funct. Mater. 31, 2101435 (2021).

    Article  CAS  Google Scholar 

  13. Liu, Y. et al. Tetrahedral framework nucleic acids deliver antimicrobial peptides with improved effects and less susceptibility to bacterial degradation. Nano Lett. 20, 3602–3610 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, M. et al. Anti-inflammatory activity of curcumin-loaded tetrahedral framework nucleic acids on acute gouty arthritis. Bioact. Mater. 8, 368–380 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, T., Tian, T. & Lin, Y. Functionalizing framework nucleic-acid-based nanostructures for biomedical application. Adv. Mater. 17, 2107820 (2022).

    Article  Google Scholar 

  16. He, Z. et al. Gold nanorods/tetrahedral DNA composites for chemo-photothermal therapy. Regen. Biomater. 9, rbac032 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tian, T. et al. A framework nucleic acid based robotic nanobee for active targeting therapy. Adv. Funct. Mater. 31, 2007342 (2020).

  18. Gao, Y. et al. A lysosome-activated tetrahedral nanobox for encapsulated siRNA delivery. Adv. Mater. 5, e2201731 (2022).

    Article  Google Scholar 

  19. Xie, X. et al. Overcoming drug-resistant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures. Nanoscale 10, 5457–5465 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Shi, S. et al. Effects of tetrahedral framework nucleic acid/wogonin complexes on osteoarthritis. Bone Res. 8, 6 (2020).

    Article  CAS  Google Scholar 

  21. Madhanagopal, B. R., Zhang, S., Demirel, E., Wady, H. & Chandrasekaran, A. R. DNA nanocarriers: programmed to deliver. Trends Biochem. Sci. 43, 997–1013 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Li, Y. et al. Tetrahedral framework nucleic acid-based delivery of resveratrol alleviates insulin resistance: from innate to adaptive immunity. Nanomicro Lett. 13, 86 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qin, X. et al. Tetrahedral framework nucleic acids-based delivery of microRNA-155 inhibits choroidal neovascularization by regulating the polarization of macrophages. Bioact. Mater. 14, 134–144 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Li, J. et al. The neuroprotective effect of microRNA-22-3p modified tetrahedral framework nucleic acids on damaged retinal neurons via TrkB/BDNF signaling pathway. Adv. Funct. Mater. 31, 2104141 (2021).

    Article  CAS  Google Scholar 

  25. Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 7, 389–393 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liang, L. et al. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. Angew. Chem. Int. Ed. Engl. 53, 7745–7750 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Wiraja, C. et al. Framework nucleic acids as programmable carrier for transdermal drug delivery. Nat. Commun. 10, 1147 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhou, M. et al. A DNA nanostructure-based neuroprotectant against neuronal apoptosis via inhibiting Toll-like receptor 2 signaling pathway in acute ischemic stroke. ACS Nano 16, 1456–1470 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Li, Q. et al. Aptamer-modified tetrahedral DNA nanostructure for tumor-targeted drug delivery. ACS Appl. Mater. Interfaces 9, 36695–36701 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Cui, W. et al. Treating LRRK2-related Parkinson’s disease by inhibiting the mTOR signaling pathway to restore autophagy. Adv. Funct. Mater. 31, 2105152 (2021).

    Article  CAS  Google Scholar 

  31. Sun, Y. et al. Erythromycin loaded by tetrahedral framework nucleic acids are more antimicrobial sensitive against Escherichia coli (E. coli). Bioact. Mater. 6, 2281–2290 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gao, P. et al. Antitumor agents based on metal–organic frameworks. Angew. Chem. Int. Ed. Engl. 60, 16763–16776 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Wu, M. X. & Yang, Y. W. Metal–organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 29, 1606134 (2017).

  34. Li, S. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36, 258–264 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Bhatia, D., Surana, S., Chakraborty, S., Koushika, S. P. & Krishnan, Y. A synthetic icosahedral DNA-based host–cargo complex for functional in vivo imaging. Nat. Commun. 2, 339 (2011).

    Article  PubMed  Google Scholar 

  36. Ma, W. et al. Biomimetic nanoerythrosome-coated aptamer-DNA tetrahedron/maytansine conjugates: pH-responsive and targeted cytotoxicity for HER2-positive breast cancer. Adv. Mater. 22, e2109609 (2022).

    Article  Google Scholar 

  37. Banerjee, A. et al. Controlled release of encapsulated cargo from a DNA icosahedron using a chemical trigger. Angew. Chem. Int. Ed. Engl. 52, 6854–6857 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–U75 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Ranjbar, R. & Hafezi-Moghadam, M. S. Design and construction of a DNA origami drug delivery system based on MPT64 antibody aptamer for tuberculosis treatment. Electron. Physician 8, 1857–1864 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tan, X. et al. Blurring the role of oligonucleotides: spherical nucleic acids as a drug delivery vehicle. J. Am. Chem. Soc. 138, 10834–10837 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Rajwar, A. et al. Geometry of a DNA nanostructure influences its endocytosis: Cellular study on 2D, 3D, and in vivo systems. ACS Nano 16, 10496–10508 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, B. et al. Facilitating in-situ tumor imaging with a tetrahedral DNA framework-enhanced hybridization chain reaction probe. Adv. Funct. Mater. 32, 2109728 (2022).

    Article  CAS  Google Scholar 

  43. Zhang, T., Tian, T. & Lin, Y. Functionalizing framework nucleic-acid-based nanostructures for biomedical application. Adv. Mater. 34, 2107820 (2022).

  44. Shi, S. et al. Biological effect of differently sized tetrahedral framework nucleic acids: Endocytosis, proliferation, migration, and biodistribution. ACS Appl. Mater. Interfaces 13, 57067–57074 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Tian, T., Li, Y. & Lin, Y. Prospects and challenges of dynamic DNA nanostructures in biomedical applications. Bone Res. 10, 40 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sefah, K., Shangguan, D., Xiong, X., O’Donoghue, M. B. & Tan, W. Development of DNA aptamers using Cell-SELEX. Nat. Protoc. 5, 1169–1185 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Xing, H., Wong, N. Y., Xiang, Y. & Lu, Y. DNA aptamer functionalized nanomaterials for intracellular analysis, cancer cell imaging and drug delivery. Curr. Opin. Chem. Biol. 16, 429–435 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hirao, I., Kimoto, M. & Lee, K. H. DNA aptamer generation by ExSELEX using genetic alphabet expansion with a mini-hairpin DNA stabilization method. Biochimie 145, 15–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Cansiz, S. et al. DNA aptamer based nanodrugs: molecular engineering for efficiency. Chem. Asian J. 10, 2084–2094 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lin, M. et al. Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform. Nat. Protoc. 11, 1244–1263 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Skolakova, P. et al. Systematic investigation of sequence requirements for DNA i-motif formation. Nucleic Acids Res. 47, 2177–2189 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Abou Assi, H., Garavis, M., Gonzalez, C. & Damha, M. J. i-Motif DNA: structural features and significance to cell biology. Nucleic Acids Res. 46, 8038–8056 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Guo, K. et al. Formation of pseudosymmetrical G-quadruplex and i-motif structures in the proximal promoter region of the RET oncogene. J. Am. Chem. Soc. 129, 10220–10228 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chu, B., Zhang, D. & Paukstelis, P. J. A DNA G-quadruplex/i-motif hybrid. Nucleic Acids Res. 47, 11921–11930 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Shi, S. et al. Targeted and effective glioblastoma therapy via aptamer-modified tetrahedral framework nucleic acid-paclitaxel nanoconjugates that can pass the blood brain barrier. Nanomed 21, 102061 (2019).

    Article  CAS  Google Scholar 

  56. Tucker, W. O., Shum, K. T. & Tanner, J. A. G-quadruplex DNA aptamers and their ligands: structure, function and application. Curr. Pharm. Des. 18, 2014–2026 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Mondragón-Sánchez, J. A., Santamaria, R. & Garduño-Juárez, R. Docking on the DNA G-quadruplex: a molecular electrostatic potential study. Biopolymers 95, 641–650 (2011).

    Article  PubMed  Google Scholar 

  58. Williams, B. A. et al. Creating protein affinity reagents by combining peptide ligands on synthetic DNA scaffolds. J. Am. Chem. Soc. 131, 17233–17241 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu, H. et al. Kinetics of RNA and RNA:DNA hybrid strand displacement. ACS Synth. Biol. 10, 3066–3073 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Erben, C. M., Goodman, R. P. & Turberfield, A. J. Single-molecule protein encapsulation in a rigid DNA cage. Angew. Chem. Int. Ed. Engl. 45, 7414–7417 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Ke, Y., Bellot, G., Voigt, N. V., Fradkov, E. & Shih, W. M. Two design strategies for enhancement of multilayer-DNA-origami folding: underwinding for specific intercalator rescue and staple-break positioning. Chem. Sci. 3, 2587–2597 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Li, S. et al. A tetrahedral framework DNA-based bioswitchable miRNA inhibitor delivery system: application to skin anti-aging. Adv. Mater. 28, e2204287 (2022).

    Article  Google Scholar 

  63. Xing, S. et al. Constructing higher-order DNA nanoarchitectures with highly purified DNA nanocages. ACS Appl. Mater. Interfaces 7, 13174–13179 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (2019YFA0110600), National Natural Science Foundation of China (81970916, 81671031, 81800947 and 82101077), Sichuan Science and Technology Program (2022JDTD0021 and 2022JDRC0143) and Postdoctoral Science Foundation of China (2020T130443, 2021M702331, 2021TQ0224 and 2021M692271), and Research Funding from West China School/Hospital of Stomatology Sichuan University (RCDWJS2021-20 and RCDWJS2022-12).

Author information

Authors and Affiliations

Authors

Contributions

Y.L. supervised and conceived of the study. T.T., Y.G., S.S. and T.Z. designed the TDN-based delivery system and completed the corresponding experiments. T.Z., T.T., S.S., X.C. and Y. G. prepared the manuscript.

Corresponding author

Correspondence to Yunfeng Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Dhiraj Bhatia, Chunhai Fan and Bin He for their contribution to the peer review of this work.

Additional information

Related links

Key references using this protocol

Tian, T. T. et al. Adv. Funct. Mater. 31, 2007342 (2021): https://doi.org/10.1002/adfm.202007342

Gao, Y. et al. Adv. Mater. 34, 2201731 (2022): https://doi.org/10.1002/adma.202201731

This protocol is an extension to: Nat. Protoc. 15, 2728–2757 (2020): https://doi.org/10.1038/s41596-020-0355-z

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, T., Zhang, T., Shi, S. et al. A dynamic DNA tetrahedron framework for active targeting. Nat Protoc 18, 1028–1055 (2023). https://doi.org/10.1038/s41596-022-00791-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00791-7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research