Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A chemo-mechanical cochleostomy preserves hearing for the in vivo functional imaging of cochlear cells

Abstract

In vivo and real-time multicellular imaging enables the decoding of sensory circuits and the tracking of systemic drug uptake. However, in vivo imaging of the auditory periphery remains technically challenging owing to the deep location, mechanosensitivity and fluid-filled, bone-encased nature of the cochlear structure. Existing methods that expose the cochlea invariably cause irreversible damage to auditory function, severely limiting the experimental measurements possible in living animals. Here we present an in vivo surgical protocol that permits the imaging of cochlear cells in hearing mice. Our protocol describes a ventro-lateral approach for preserving external and middle ear structures while performing surgery, the correct mouse positioning for imaging cochlear cells with effective sound transmission into the ear, the chemo-mechanical cochleostomy for creating the imaging window in the otic capsule bone that prevents intracochlear fluid leakage by maintaining an intact endosteum, and the release of intracochlear pressure that separates the endosteum from the otic capsule bone while creating an imaging window. The procedure thus preserves hearing thresholds. Individual inner and outer hair cells, supporting cells and nerve fibers can be visualized in vivo while hearing function is preserved. This approach may enable future original investigations, such as the real-time tracking of ototoxic drug transport into the cochleae. The technique may be applied to the monitoring of sound-evoked functional activity in multiple cochlear cells, in combination with optogenetic tools, and may help to improve cochlear implantation in humans. The cochleostomy takes ~1 h and requires experience in surgery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustrations of the cochlea within a mouse.
Fig. 2: Surgical setup.
Fig. 3: Mouse positioning with a head holder.
Fig. 4: Surgical approach to image the cochlea in vivo, without damaging the external or middle ear.
Fig. 5: Intracochlear pressure release through a tiny hole in the semi-circular canal.
Fig. 6: Surgical approach for creating an imaging window (IW) with preserved hearing function.
Fig. 7: ABR measurements of each surgical step.
Fig. 8: Two-photon in vivo image of the OoC through the IW.
Fig. 9: In vivo time-lapse images of GTTR.

Similar content being viewed by others

Data availability

The authors declare that the main data discussed in this protocol are available in the supporting primary research paper (https://www.pnas.org/doi/10.1073/pnas.2117946119).

References

  1. Yin, L. et al. Imaging light responses of retinal ganglion cells in the living mouse eye. J. Neurophysiol. 109, 2415–2421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Charpak, S., Mertz, J., Beaurepaire, E., Moreaux, L. & Delaney, K. Odor-evoked calcium signals in dendrites of rat mitral cells. Proc. Natl Acad. Sci. USA 98, 1230–1234 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barretto, R. P. J. et al. The neural representation of taste quality at the periphery. Nature 517, 373–U511 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Kim, Y. S. et al. Coupled activation of primary sensory neurons contributes to chronic pain. Neuron 91, 1085–1096 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Imamura, S. & Adams, J. C. Distribution of gentamicin in the guinea pig inner ear after local or systemic application. J. Assoc. Res. Otolaryngol. 4, 176–195 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang, Q. & Steyger, P. S. Trafficking of systemic fluorescent gentamicin into the cochlea and hair cells. J. Assoc. Res. Otolaryngol. 10, 205–219 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tanoshima, R. et al. Analyses of adverse drug reactions-nationwide active surveillance network: Canadian Pharmacogenomics Network for Drug Safety Database. J. Clin. Pharmacol. 59, 356–363 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Du, X. et al. A hand-guided robotic drill for cochleostomy on human cadavers. Robot Surg. 5, 13–18 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Fishman, A. J., Moreno, L. E., Rivera, A. & Richter, C. P. CO2 laser fiber soft cochleostomy: development of a technique using human temporal bones and a guinea pig model. Laser Surg. Med. 42, 245–256 (2010).

    Article  Google Scholar 

  10. Ren, D. D. & Chi, F. L. Experimental study on thermic effects, morphology and function of guinea pig cochlea: a comparison between the erbium: yttrium–aluminum–garnet laser and carbon dioxide laser. Laser Surg. Med. 40, 407–414 (2008).

    Article  Google Scholar 

  11. Cipolla, M. J., Iyer, P., Dome, C., Welling, D. B. & Bush, M. L. Modification and comparison of minimally invasive cochleostomy techniques: a pilot study. Laryngoscope 122, 1142–1147 (2012).

    Article  PubMed  Google Scholar 

  12. Kiefer, J. et al. Conservation of low-frequency hearing in cochlear implantation. Acta Oto-Laryngol. 124, 272–280 (2004).

    Article  Google Scholar 

  13. Dong, W. & Cooper, N. P. An experimental study into the acousto-mechanical effects of invading the cochlea. J. R. Soc. Interface 3, 561–571 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cooper, N. P. & Rhode, W. S. Fast travelling waves, slow travelling waves and their interactions in experimental studies of apical cochlear mechanics. Audit Neurosci. 2, 289–299 (1996).

    Google Scholar 

  15. Ulfendahl, M., Khanna, S. M. & Flock, A. Effects of opening and resealing the cochlea on the mechanical response in the isolated temporal bone preparation. Hearing Res. 57, 31–37 (1991).

    Article  CAS  Google Scholar 

  16. Alyono, J. C., Corrales, C. E., Huth, M. E., Blevins, N. H. & Ricci, A. J. Development and characterization of chemical cochleostomy in the guinea pig. Otolaryngol. Head. Neck Surg. 152, 1113–1118 (2015).

    Article  PubMed  Google Scholar 

  17. Kim, J. & Ricci, A.J. In vivo real-time imaging reveals megalin as the aminoglycoside gentamicin transporter into cochlea whose inhibition is otoprotective. Proc. Natl Acad. Sci. USA 119, e2117946119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee, H. Y. et al. Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea. Proc. Natl Acad. Sci. USA 112, 3128–3133 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nuttall, A. L., Dolan, D. F. & Avinash, G. Laser Doppler velocimetry of basilar membrane vibration. Hear. Res. 51, 203–213 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Ruggero, M. A. & Rich, N. C. Application of a commercially-manufactured Doppler-shift laser velocimeter to the measurement of basilar-membrane vibration. Hear. Res. 51, 215–230 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ren, T. Longitudinal pattern of basilar membrane vibration in the sensitive cochlea. Proc. Natl Acad. Sci. USA 99, 17101–17106 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ren, T. Reverse propagation of sound in the gerbil cochlea. Nat. Neurosci. 7, 333–334 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Dong, W. & Olson, E. S. Detection of cochlear amplification and its activation. Biophys. J. 105, 1067–1078 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dallos, P. Response characteristics of mammalian cochlear hair cells. J. Neurosci. 5, 1591–1608 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Russell, I. J. & Sellick, P. M. Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells. J. Physiol. 338, 179–206 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liberman, M. C. Auditory-nerve response from cats raised in a low-noise chamber. J. Acoust. Soc. Am. 63, 442–455 (1978).

    Article  CAS  PubMed  Google Scholar 

  27. Lee, H. Y. et al. Two-dimensional cochlear micromechanics measured in vivo demonstrate radial tuning within the mouse organ of Corti. J. Neurosci. 36, 8160–8173 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, R. K. & Nuttall, A. L. Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study. J. Biomed. Opt. 15, 056005 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jawadi, Z., Applegate, B. E. & Oghalai, J. S. Optical coherence tomography to measure sound-induced motions within the mouse organ of Corti in vivo. Methods Mol. Biol. 1427, 449–462 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim, J., Xia, A., Grillet, N., Applegate, B. E. & Oghalai, J. S. Osmotic stabilization prevents cochlear synaptopathy after blast trauma. Proc. Natl Acad. Sci. USA 115, E4853–E4860 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McGinley, M. J., Liberman, M. C., Bal, R. & Oertel, D. Generating synchrony from the asynchronous: compensation for cochlear traveling wave delays by the dendrites of individual brainstem neurons. J. Neurosci. 32, 9301–9311 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marker, D.F., Tremblay, M.E., Lu, S.M., Majewska, A.K. & Gelbard, H.A. A thin-skull window technique for chronic two-photon in vivo imaging of murine microglia in models of neuroinflammation. J. Vis. Exp. 43, 2059 (2010).

    Google Scholar 

  33. Mancini, M. et al. Head and neck veins of the mouse. a magnetic resonance, micro computed tomography and high frequency color Doppler ultrasound study. PLoS ONE 10, e0129912 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Our thanks to those involved in the early stages of development including N. Blevins, E. Corrales and J. C. Alyono. We are also grateful to J. B. Azimzadeh, who commented on the manuscript, C. Gralapp, who drew artworks, and E. Scheibinger, who helped to list materials. Lastly, we thank J. S. Oghalai for having shared a mouse head holder and the surgical approach to the cochlea through the bulla. This project was funded by National Institutes of Health grants R01 DC014720 and DC003896-16. Our thanks for philanthropic contributions from the Stanford Initiative to Cure Hearing Loss and the generous donations of the Oberndorf Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.K. and A.J.R. designed the experiments and developed the mouse cochleostomy; J.K. performed mouse surgery, ABR test, in vivo two-photon imaging and data analysis; J.K. and A.J.R. wrote the manuscript; A.J.R. supervised the entire project.

Corresponding author

Correspondence to Anthony J. Ricci.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks David Corey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Kim, J. & Ricci, A. Proc. Natl Acad. Sci. USA 119, e2117946119 (2022): https://doi.org/10.1073/pnas.2117946119

Supplementary information

Reporting Summary

Supplementary Video 1

Imaging window creation

Supplementary Data 1

Mouse head holder, part1.

Supplementary Data 2

Mouse head holder, part2.

Supplementary Data 3

Mouse head holder, part3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Ricci, A.J. A chemo-mechanical cochleostomy preserves hearing for the in vivo functional imaging of cochlear cells. Nat Protoc 18, 1137–1154 (2023). https://doi.org/10.1038/s41596-022-00786-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00786-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research