Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Monomicellar assembly to synthesize structured and functional mesoporous carbonaceous nanomaterials

Abstract

The large pores of functional mesoporous carbonaceous nanomaterials have broad accessibility, making them efficient substrates for the mass transport of chemicals in biomedical applications, gas separation, catalysis, sensing, and energy storage and conversion. Recently, the assembly of monomicelles has been used to control the nanostructure and mesoporosity of carbonaceous nanomaterials, where the structure-oriented unit is a single micelle made up of block copolymers/surfactants and of precursor species (via hydrogen bonds, Coulombic and/or other noncovalent interactions). Each monomicelle then represents a template for a single mesopore, and multiple monomicelles can be stacked like LEGO blocks. After polymerization of the precursor species (in this case dopamine), carbonization results in the carbonaceous nanomaterial. The micellar size, structure and shape can be easily tuned by altering the synthetic conditions, providing a high degree of control over the structure of the final product, which can therefore be shaped into original nanostructures otherwise difficult to synthesize using conventional templating methods. Here we provide a detailed procedure for the preparation of the monomicelles, the monomicellar assembly into mesostructured polymeric samples and the conversion of polymeric samples to carbonaceous frameworks. We describe the functional characterization of two mesoporous carbonaceous nanomaterials that demonstrate excellent sodium-ion storage performance and oxygen reduction reactivity, respectively. The monomicellar assembly process for the synthesis of the ordered mesoporous polymers requires ~5 h; the synthesis, including subsequent centrifugation, freeze drying and carbonization, requires 2 d, whereas the entire procedure, including the characterization of the nanomaterials, requires ~4 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The principal formation mechanisms for the synthesis of mesoporous carbonaceous nanomaterials.
Fig. 2: Photographs and corresponding models of the synthesis stages of the mesoporous carbonaceous nanomaterials.
Fig. 3: Template-directed pore structures obtained in mesoporous carbon nanospheres.
Fig. 4: Dependences of pore size of the mesoporous carbon nanospheres on the hydrophobic organic molecules.
Fig. 5: Dependences of the pore location for the mesoporous carbon nanospheres on the stirring rate.
Fig. 6: Spectroscopic characterizations of the mesoPDA nanospheres.
Fig. 7: Variability of the monomicellar assembly approach.
Fig. 8: Physicochemical characterizations of the mesoporous carbon nanospheres.
Fig. 9: Sodium-ion storage study of the mesoporous carbon nanospheres.
Fig. 10: ORR study of the mesoporous carbon nanospheres.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are included in the article and its Supplementary Information.

References

  1. Li, W., Liu, J. & Zhao, D. Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 1, 16023 (2016).

    Article  CAS  Google Scholar 

  2. Duan, L. et al. Interfacial assembly and applications of functional mesoporous materials. Chem. Rev. 121, 14349–14429 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Zhao, D. et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Ryoo, R. et al. Rare-earth-platinum alloy nanoparticles in mesoporous zeolite for catalysis. Nature 585, 221–224 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Zu, L. et al. Self-assembly of Ir-based nanosheets with ordered interlayer space for enhanced electrocatalytic water oxidation. J. Am. Chem. Soc. 144, 2208–2217 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Guan, B. Y., Yu, L. & Lou, X. W. Formation of asymmetric bowl-like mesoporous particles via emulsion-induced interface anisotropic assembly. J. Am. Chem. Soc. 138, 11306–11311 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Hung, C.-T. et al. Gradient hierarchically porous structure for rapid capillary-assisted catalysis. J. Am. Chem. Soc. 144, 6091–6099 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, R. et al. Janus mesoporous sensor devices for simultaneous multivariable gases detection. Matter 1, 1274–1284 (2019).

    Article  Google Scholar 

  9. Ariga, K. et al. A layered mesoporous carbon sensor based on nanopore-filling cooperative adsorption in the liquid phase. Angew. Chem. Int. Ed. 47, 7254–7257 (2008).

    Article  CAS  Google Scholar 

  10. Ren, Y. et al. Synthesis of orthogonally assembled 3D cross-stacked metal oxide semiconducting nanowires. Nat. Mater. 19, 203–211 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Yuan, Y.-F. et al. Wiggling mesopores kinetically amplify the adsorptive separation of propylene/propane. Angew. Chem. Int. Ed. 60, 19063–19067 (2021).

    Article  CAS  Google Scholar 

  12. Zhao, T. et al. Surface-kinetics mediated mesoporous multipods for enhanced bacterial adhesion and inhibition. Nat. Commun. 10, 4387 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Oh, J. Y. et al. Cloaking nanoparticles with protein corona shield for targeted drug delivery. Nat. Commun. 9, 4548 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kankala, R. K. et al. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Adv. Mater. 32, 1907035 (2020).

    Article  CAS  Google Scholar 

  15. Zhi, J., Zhou, M., Zhang, Z., Reiser, O. & Huang, F. Interstitial boron-doped mesoporous semiconductor oxides for ultratransparent energy storage. Nat. Commun. 12, 445 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yan, Y. et al. Mesoporous nanoarchitectures for electrochemical energy conversion and storage. Adv. Mater. 32, 2004654 (2020).

    Article  CAS  Google Scholar 

  17. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992).

    Article  CAS  Google Scholar 

  18. Guan, B. Y., Zhang, S. L. & Lou, X. W. Realization of walnut-shaped particles with macro-/mesoporous open channels through pore architecture manipulation and their use in electrocatalytic oxygen reduction. Angew. Chem. Int. Ed. 130, 6284–6288 (2018).

    Article  Google Scholar 

  19. Fang, Y. et al. Interface tension-induced synthesis of monodispersed mesoporous carbon hemispheres. J. Am. Chem. Soc. 137, 2808–2811 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, Y. et al. Radially oriented mesoporous TiO2 microspheres with single-crystal-like anatase walls for high-efficiency optoelectronic devices. Sci. Adv. 1, e1500166 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li, X. et al. Anisotropic growth-induced synthesis of dual-compartment Janus mesoporous silica nanoparticles for bimodal triggered drugs delivery. J. Am. Chem. Soc. 136, 15086–15092 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Jiang, B. et al. Mesoporous metallic iridium nanosheets. J. Am. Chem. Soc. 140, 12434–12441 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Wei, J. et al. New insight into the synthesis of large-pore ordered mesoporous materials. J. Am. Chem. Soc. 139, 1706–1713 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Kim, S., Hwang, J., Lee, J. & Lee, J. Polymer blend directed anisotropic self-assembly toward mesoporous inorganic bowls and nanosheets. Sci. Adv. 6, eabb3814 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, J. et al. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nat. Commun. 4, 2798 (2013).

    Article  Google Scholar 

  26. Liu, Y. et al. Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater. 25, 1353–1359 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Yang, Z.-C. et al. Hollow carbon nanoparticles of tunable size and wall thickness by hydrothermal treatment of α-cyclodextrin templated by F127 block copolymers. Chem. Mater. 25, 704–710 (2013).

    Article  CAS  Google Scholar 

  28. Hou, H., Banks, C. E., Jing, M., Zhang, Y. & Ji, X. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 27, 7861–7866 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Xu, F. et al. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. Nat. Commun. 6, 7221 (2015).

    Article  PubMed  Google Scholar 

  30. Kim, M. et al. Tailored nanoarchitecturing of microporous ZIF-8 to hierarchically porous double-shell carbons and their intrinsic electrochemical property. ACS Appl. Mater. Interfaces 12, 34065–34073 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Kim, M. et al. KOH-activated hollow ZIF-8 derived porous carbon: nanoarchitectured control for upgraded capacitive deionization and supercapacitor. ACS Appl. Mater. Interfaces 13, 52034–52043 (2021).

    Article  CAS  Google Scholar 

  32. Kim, M. et al. Efficient lithium-ion storage using a heterostructured porous carbon framework and its in situ transmission electron microscopy study. Chem. Commun. 58, 863–866 (2022).

    Article  CAS  Google Scholar 

  33. Kong, B. et al. Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks. Nat. Chem. 8, 171–178 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Che, S. et al. Synthesis and characterization of chiral mesoporous silica. Nature 429, 281–284 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Yang, P., Zhao, D., Margolese, D. I., Chmelka, B. F. & Stucky, G. D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396, 152–155 (1998).

    Article  CAS  Google Scholar 

  36. Ryoo, R., Joo, S. H. & Jun, S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B 103, 7743–7746 (1999).

    Article  CAS  Google Scholar 

  37. Lee, J., Yoon, S., Oh, S. M., Shin, C.-H. & Hyeon, T. Development of a new mesoporous carbon using an HMS aluminosilicate template. Adv. Mater. 12, 359–362 (2000).

    Article  CAS  Google Scholar 

  38. Wang, G. et al. Controlled synthesis of N-doped carbon nanospheres with tailored mesopores through self-assembly of colloidal silica. Angew. Chem. Int. Ed. 127, 15406–15411 (2015).

    Article  Google Scholar 

  39. Kim, K. et al. Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template. Nature 535, 131–135 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Meng, Y. et al. Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. Angew. Chem. Int. Ed. 44, 7053–7059 (2005).

    Article  CAS  Google Scholar 

  41. Zhang, F. et al. A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3̄d bicontinuous cubic structure. J. Am. Chem. Soc. 127, 13508–13509 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Giese, M., Blusch, L. K., Khan, M. K. & MacLachlan, M. J. Functional materials from cellulose-derived liquid-crystal templates. Angew. Chem. Int. Ed. 54, 2888–2910 (2015).

    Article  CAS  Google Scholar 

  43. Antonelli, D. M., Nakahira, A. & Ying, J. Y. Ligand-assisted liquid crystal templating in mesoporous niobium oxide molecular sieves. Inorg. Chem. 35, 3126–3136 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Zhao, D., Huo, Q., Feng, J., Chmelka, B. F. & Stucky, G. D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120, 6024–6036 (1998).

    Article  CAS  Google Scholar 

  45. Zhao, Z. et al. General synthesis of ultrafine monodispersed hybrid nanoparticles from highly stable monomicelles. Adv. Mater. 33, 2100820 (2021).

    Article  CAS  Google Scholar 

  46. Peng, L. et al. Programmable synthesis of radially gradient-structured mesoporous carbon nanospheres with tunable core-shell architectures. Chem 7, 1020–1032 (2021).

    Article  CAS  Google Scholar 

  47. Peng, L. et al. Spiral self-assembly of lamellar micelles into multi-shelled hollow nanospheres with unique chiral architecture. Sci. Adv. 7, eabi7403 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, R. et al. Precisely controlled vertical alignment in mesostructured carbon thin films for efficient electrochemical sensing. ACS Nano 15, 7713–7721 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Peng, L. et al. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. J. Am. Chem. Soc. 141, 7073–7080 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Zhao, T. et al. Spatial isolation of carbon and silica in a single Janus mesoporous nanoparticle with tunable amphiphilicity. J. Am. Chem. Soc. 140, 10009–10015 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Xie, L. et al. Sequential superassembly of nanofiber arrays to carbonaceous ordered mesoporous nanowires and their heterostructure membranes for osmotic energy conversion. J. Am. Chem. Soc. 143, 6922–6932 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Lee, Y. J. et al. Lens-shaped carbon particles with perpendicularly-oriented channels for high-performance proton exchange membrane fuel cells. ACS Nano 16, 2988–2996 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Peng, H. et al. Pore and heteroatom engineered carbon foams for supercapacitors. Adv. Energy Mater. 9, 1803665 (2019).

    Article  Google Scholar 

  54. Pan, P. et al. Interface coassembly and polymerization on magnetic colloids: toward core-shell functional mesoporous polymer microspheres and their carbon derivatives. Adv. Sci. 7, 2000443 (2020).

    Article  CAS  Google Scholar 

  55. Lin, K. et al. Hollow mesoporous polydopamine nanospheres: synthesis, biocompatibility and drug delivery. Nanotechnology 32, 285602 (2021).

    Article  CAS  Google Scholar 

  56. Wen, B. et al. Synthesis of core-shell Co@S-doped carbon@ mesoporous N-doped carbon nanosheets with a hierarchically porous structure for strong electromagnetic wave absorption. J. Mater. Chem. A 9, 3567–3575 (2021).

    Article  CAS  Google Scholar 

  57. Peng, L. et al. Anisotropic self-assembly of asymmetric mesoporous hemispheres with tunable pore structures at liquid-liquid interfaces. J. Am. Chem. Soc. 144, 15754–15763 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Guo, D. et al. Monodisperse ultrahigh nitrogen-containing mesoporous carbon nanospheres from melamine-formaldehyde resin. Small Methods 5, 2001137 (2021).

    Article  CAS  Google Scholar 

  59. Zhu, X. et al. Synthesis of carbon nanotubes@mesoporous carbon core-shell structured electrocatalysts via a molecule-mediated interfacial co-assembly strategy. J. Mater. Chem. A 7, 8975–8983 (2019).

    Article  CAS  Google Scholar 

  60. Lan, K. et al. Two-dimensional mesoporous heterostructure delivering superior pseudocapacitive sodium storage via bottom-up monomicelle assembly. J. Am. Chem. Soc. 141, 16755–16762 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Lin, G., Zheng, J. & Xu, R. Template-free synthesis of uniform CdS hollow nanospheres and their photocatalytic activities. J. Phys. Chem. C 112, 7363–7370 (2008).

    Article  CAS  Google Scholar 

  62. Zhang, L. et al. Magnetic-mesoporous Janus nanoparticles. Chem. Commun. 47, 1225–1227 (2011).

    Article  CAS  Google Scholar 

  63. Lan, K. et al. Uniform ordered two-dimensional mesoporous TiO2 nanosheets from hydrothermal-induced solvent-confined monomicelle assembly. J. Am. Chem. Soc. 140, 4135–4143 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2018YFA0209401, 2018YFE0201701 and 2017YFA0207303), National Natural Science Foundation of China (grant nos. 22105041, 21733003 and U21A20329 21975050), Program of Shanghai Academic Research Leader (21XD1420800) and Shanghai Pilot Program for Basic Research-Fudan University 21TQ1400100 (21TQ008) and Science and Technology Commission of Shanghai Municipality (19JC1410700).

Author information

Authors and Affiliations

Authors

Contributions

L.P., W.L. and D.Z. developed the protocol and co-drafted the manuscript. H.P. contributed to the discussion and manuscript modification.

Corresponding authors

Correspondence to Wei Li or Dongyuan Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Yusuke Yamauchi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Zhao, T. et al. J. Am. Chem. Soc. 140, 10009–10015 (2018): https://doi.org/10.1021/jacs.8b06127

Zhu, X. et al. J. Mater. Chem. A 7, 8975–8983 (2019): https://doi.org/10.1039/C9TA01478K

Peng, L. et al. J. Am. Chem. Soc. 141, 7073–7080 (2019): https://doi.org/10.1021/jacs.9b02091

Peng, L. et al. Sci. Adv. 7, eabi7403 (2021): https://www.science.org/doi/10.1126/sciadv.abi7403

Peng, L. et al. Chem 7, 1020–1032 (2021): https://doi.org/10.1016/j.chempr.2021.01.001

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, L., Peng, H., Li, W. et al. Monomicellar assembly to synthesize structured and functional mesoporous carbonaceous nanomaterials. Nat Protoc 18, 1155–1178 (2023). https://doi.org/10.1038/s41596-022-00784-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00784-6

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing