Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

MOF-derived nanoporous carbons with diverse tunable nanoarchitectures

Abstract

Metal-organic frameworks (MOFs), or porous coordination polymers, are crystalline porous materials formed by coordination bonding between inorganic and organic species on the basis of the self-assembly of the reacting units. The typical characteristics of MOFs, including their large specific surface areas, ultrahigh porosities and excellent thermal and chemical stabilities, as well as their great potential for chemical and structural modifications, make them excellent candidates for versatile applications. Their poor electrical conductivity, however, has meant that they have not been useful for electrochemical applications. Fortuitously, the direct carbonization of MOFs results in a rearrangement of the carbon atoms of the organic units into a network of carbon atoms, which means that the products have useful levels of conductivity. The direct carbonization of zeolitic imidazolate framework (ZIF)-type MOFs, particularly ZIF-8, has successfully widened the scope of possible applications of MOFs to include electrochemical reactions that could be used in, for example, energy storage, energy conversion, electrochemical biosensors and capacitive deionization of saline water. Here, we present the first detailed protocols for synthesizing high-quality ZIF-8 and its modified forms of hollow ZIF-8, core-shell ZIF-8@ZIF-67 and ZIF-8@mesostuctured polydopamine. Typically, ZIF-8 synthesis takes 27 h to complete, and subsequent nanoarchitecturing procedures leading to hollow ZIF-8, ZIF-8@ZIF-67 and ZIF-8@mPDA take 6, 14 and 30 h, respectively. The direct-carbonization procedure takes 12 h. The resulting nanoporous carbons are suitable for electrochemical applications, in particular as materials for supercapacitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Setting up the three-electrode cell.
Fig. 2: Synthesis of ZIF-8 and its carbonization.
Fig. 3: Synthesis of HZIF-8 and its carbonization.
Fig. 4: Synthesis of core-shell ZIF-8@ZIF-67 and its carbonization.
Fig. 5: Direct carbonization and electron microscopy images of the products.
Fig. 6: mPDA coating of ZIF-8.
Fig. 7: Physical and electrochemical characterizations of NPCs obtained at different carbonization temperatures.
Fig. 8: Physical and electrochemical characterizations of NPC and HNPC.
Fig. 9: Physical and electrochemical characterizations of NC, GC and NC@GCs.
Fig. 10: Physical and electrochemical characterizations of NPC, HPC-2.5 and HPC-5.0.

Similar content being viewed by others

Data availability

The main data discussed in this protocol are available in the supporting primary research papers42,48,50,52. Datasets of Fig. 6d and g have been made openly accessible at Figshare (https://doi.org/10.6084/m9.figshare.18515858.v1). Source data are provided with this paper.

References

  1. Ahmad, T. & Zhang, D. A critical review of comparative global historical energy consumption and future demand: the story told so far. Energy Rep. 6, 1973–1991 (2020).

    Article  Google Scholar 

  2. Omer, A. M. Energy use and environmental impacts: a general review. J. Renew. Sustain. Energy 1, 053101 (2009).

    Article  Google Scholar 

  3. Iqbal, S., Khatoon, H., Hussain Pandit, A. & Ahmad, S. Recent development of carbon based materials for energy storage devices. Mater. Sci. Energy Technol. 2, 417–428 (2019).

    Google Scholar 

  4. Titirici, M.-M. et al. Sustainable carbon materials. Chem. Soc. Rev. 44, 250–290 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Sun, M.-H. et al. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 45, 3479–3563 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Brownson, D. A. C., Kampouris, D. K. & Banks, C. E. An overview of graphene in energy production and storage applications. J. Power Sources 196, 4873–4885 (2011).

    Article  CAS  Google Scholar 

  7. Ye, M., Zhang, Z., Zhao, Y. & Qu, L. Graphene platforms for smart energy generation and storage. Joule 2, 245–268 (2018).

    Article  CAS  Google Scholar 

  8. Wang, L. & Hu, X. Recent advances in porous carbon materials for electrochemical energy storage. Chem. Asian J. 13, 1518–1529 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, Q., Huang, J.-Q., Qian, W.-Z., Zhang, Y.-Y. & Wei, F. The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9, 1237–1265 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Randviir, E. P., Brownson, D. A. C. & Banks, C. E. A decade of graphene research: production, applications and outlook. Mater. Today 17, 426–432 (2014).

    Article  CAS  Google Scholar 

  11. Li, X. & Zhi, L. Graphene hybridization for energy storage applications. Chem. Soc. Rev. 47, 3189–3216 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Kairi, M. I. et al. Toward high production of graphene flakes—a review on recent developments in their synthesis methods and scalability. J. Mater. Chem. A 6, 15010–15026 (2018).

    Article  CAS  Google Scholar 

  13. Li, W., Liu, J. & Zhao, D. Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 1, 16023 (2016).

    Article  CAS  Google Scholar 

  14. Zhai, Y. et al. Carbon materials for chemical capacitive energy storage. Adv. Mater. 23, 4828–4850 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Wu, L., Li, Y., Fu, Z. & Su, B.-L. Hierarchically structured porous materials: synthesis strategies and applications in energy storage. Natl Sci. Rev. 7, 1667–1701 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Borchardt, L. et al. Toward a molecular design of porous carbon materials. Mater. Today 20, 592–610 (2017).

    Article  CAS  Google Scholar 

  17. Kudernac, T., Lei, S., Elemans, J. A. A. W. & De Feyter, S. Two-dimensional supramolecular self-assembly: nanoporous networks on surfaces. Chem. Soc. Rev. 38, 402–421 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Zhu, Y.-P., Ren, T.-Z., Ma, T.-Y. & Yuan, Z.-Y. Hierarchical structures from inorganic nanocrystal self-assembly for photoenergy utilization. Int. J. Photoenergy 2014, 498540 (2014).

    Article  Google Scholar 

  19. Ariga, K. et al. Self-assembly as a key player for materials nanoarchitectonics. Sci. Technol. Adv. Mater. 20, 51–95 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, Q. & Astruc, D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 120, 1438–1511 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Geng, K. et al. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 16, 8814–8933 (2020).

    Article  Google Scholar 

  22. Stergar, J. & Maver, U. Review of aerogel-based materials in biomedical applications. J. Solgel Sci. Technol. 77, 738–752 (2016).

    Article  CAS  Google Scholar 

  23. Xia, W. et al. High-performance energy storage and conversion materials derived from a single metal-organic framework/graphene aerogel composite. Nano Lett. 17, 2788–2795 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Xuan, X. et al. Carbon nanomaterials from metal-organic frameworks: a new material horizon for CO2 reduction. Front. Chem. 8, 573797 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yaghi, O. M., Li, G. & Li, H. Selective binding and removal of guests in a microporous metal–organic framework. Nature 378, 703–706 (1995).

    Article  CAS  Google Scholar 

  26. Yaghi, O. M. & Li, H. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 117, 10401–10402 (1995).

    Article  CAS  Google Scholar 

  27. Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999).

    Article  CAS  Google Scholar 

  28. Zhang, X. et al. A historical overview of the activation and porosity of metal–organic frameworks. Chem. Soc. Rev. 49, 7406–7427 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).

    Article  PubMed  Google Scholar 

  31. Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186–10191 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, B., Shioyama, H., Akita, T. & Xu, Q. Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130, 5390–5391 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Radhakrishnan, L. et al. Preparation of microporous carbon fibers through carbonization of Al-based porous coordination polymer (Al-PCP) with furfuryl alcohol. Chem. Mater. 23, 1225–1231 (2011).

    Article  CAS  Google Scholar 

  34. Hu, M. et al. Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon. J. Am. Chem. Soc. 134, 2864–2867 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Chaikittisilp, W. et al. Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem. Commun. 48, 7259–7261 (2012).

    Article  CAS  Google Scholar 

  36. Jiang, H.-L. et al. From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc. 133, 11854–11857 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Yang, S. J. et al. MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem. Mater. 24, 464–470 (2012).

    Article  CAS  Google Scholar 

  38. Wang, C. et al. New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem 6, 19–40 (2020).

    Article  CAS  Google Scholar 

  39. Marpaung, F. et al. Metal–organic framework (MOF)-derived nanoporous carbon materials. Chem. Asian J. 14, 1331–1343 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Chaikittisilp, W., Ariga, K. & Yamauchi, Y. A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications. J. Mater. Chem. A 1, 14–19 (2013).

    Article  CAS  Google Scholar 

  41. Wan, X. et al. Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2, 259–268 (2019).

    Article  CAS  Google Scholar 

  42. Kim, M. et al. Tailored nanoarchitecturing of microporous ZIF-8 to hierarchically porous double-shell carbons and their intrinsic electrochemical property. ACS Appl. Mater. Interfaces 12, 34065–34073 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Ariga, K., Vinu, A., Yamauchi, Y., Ji, Q. & Hill, J. P. Nanoarchitectonics for mesoporous materials. Bull. Chem. Soc. Jpn. 85, 1–32 (2012).

    Article  CAS  Google Scholar 

  44. Lim, H. et al. A universal approach for the synthesis of mesoporous gold, palladium and platinum films for applications in electrocatalysis. Nat. Protoc. 15, 2980–3008 (2020).

    Article  PubMed  Google Scholar 

  45. Ariga, K., Ji, Q., Nakanishi, W., Hill, J. P. & Aono, M. Nanoarchitectonics: a new materials horizon for nanotechnology. Mater. Horiz. 2, 406–413 (2015).

    Article  CAS  Google Scholar 

  46. Gadipelli, S. & Guo, Z. X. Tuning of ZIF-derived carbon with high activity, nitrogen functionality, and yield—a case for superior CO2 capture. ChemSusChem 8, 2123–2132 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ariga, K. & Yamauchi, Y. Nanoarchitectonics from atom to life. Chem. Asian J. 15, 718–728 (2020).

    Article  CAS  Google Scholar 

  48. Tang, J. et al. Thermal conversion of core–shell metal–organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc. 137, 1572–1580 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, W. et al. Hollow carbon nanobubbles: monocrystalline MOF nanobubbles and their pyrolysis. Chem. Sci. 8, 3538–3546 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim, M. et al. KOH activated hollow ZIF-8 derived porous carbon: nanoarchitectured control for upgraded capacitive deionization and supercapacitor. ACS Appl. Mater. Interfaces 13, 52034–52043 (2021).

    Article  CAS  Google Scholar 

  51. Wang, M. J. et al. Preparation of hollow nitrogen doped carbon via stresses induced orientation contraction. Small 14, 1804183 (2018).

    Article  Google Scholar 

  52. Young, C. et al. Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon: the effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte. Phys. Chem. Chem. Phys. 18, 29308–29315 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Xie, Y., Kocaefe, D., Chen, C. & Kocaefe, Y. Review of research on template methods in preparation of nanomaterials. J. Nanomater. 2016, 2302595 (2016).

    Article  Google Scholar 

  54. Malgras, V. et al. Templated synthesis for nanoarchitectured porous materials. Bull. Chem. Soc. Jpn. 88, 1171–1200 (2015).

    Article  CAS  Google Scholar 

  55. Zhang, L., Jin, L., Liu, B. & He, J. Templated growth of crystalline mesoporous materials: from soft/hard templates to colloidal templates. Front. Chem. 7, 22 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang, Z., Zhang, Y. & Schnepp, Z. Soft and hard templating of graphitic carbon nitride. J. Mater. Chem. A 3, 14081–14092 (2015).

    Article  CAS  Google Scholar 

  57. Torad, N. L. et al. Nanoarchitectured porous carbons derived from ZIFs toward highly sensitive and selective QCM sensor for hazardous aromatic vapors. J. Hazard. Mater. 405, 124248 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Cheng, N. et al. Recent development of zeolitic imidazolate frameworks (ZIFs) derived porous carbon based materials as electrocatalysts. Adv. Energy Mater. 8, 1801257 (2018).

    Article  Google Scholar 

  59. Wang, C. et al. Gram-scale synthesis of MOF-derived superporous carbon aerogels with extraordinary adsorption capacity for organic solvents. Angew. Chem. Int. Ed. Engl. 59, 2066–2070 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Zhao, Y. et al. Nanoengineering metal–organic framework-based materials for use in electrochemical CO2 reduction reactions. Small 17, 2006590 (2021).

    Article  CAS  Google Scholar 

  61. Salunkhe, R. R., Kaneti, Y. V., Kim, J., Kim, J. H. & Yamauchi, Y. Nanoarchitectures for metal–organic framework-derived nanoporous carbons toward supercapacitor applications. Acc. Chem. Res. 49, 2796–2806 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Xia, W. et al. Defect-rich graphene nanomesh produced by thermal exfoliation of metal–organic frameworks for the oxygen reduction reaction. Angew. Chem. Int. Ed. Engl. 58, 13354–13359 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Xu, X., Wang, H., Liu, J. & Yan, H. The applications of zeolitic imidazolate framework-8 in electrical energy storage devices: a review. J. Mater. Sci. Mater. Electron. 28, 7532–7543 (2017).

    Article  CAS  Google Scholar 

  64. Gadipelli, S. et al. Size-related electrochemical performance in active carbon nanostructures: a MOFs-derived carbon case study. Adv. Sci. 6, 1901517 (2019).

    Article  CAS  Google Scholar 

  65. Gadipelli, S. et al. Superior multifunctional activity of nanoporous carbons with widely tunable porosity: enhanced storage capacities for carbon-dioxide, hydrogen, water, and electric charge. Adv. Energy Mater. 10, 1903649 (2020).

    Article  CAS  Google Scholar 

  66. Hobday, C. L. et al. Understanding the adsorption process in ZIF-8 using high pressure crystallography and computational modelling. Nat. Commun. 9, 1429 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Torad, N. L. et al. Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals. Chem. Commun. 49, 2521–2523 (2013).

    Article  CAS  Google Scholar 

  68. Zou, Y. et al. Tailored mesoporous inorganic biomaterials: assembly, functionalization, and drug delivery engineering. Adv. Mater. 33, 2005215 (2021).

    Article  CAS  Google Scholar 

  69. Tang, H. et al. ZIF-8-derived hollow carbon for efficient adsorption of antibiotics. Nanomater 9, 117 (2019).

    Article  Google Scholar 

  70. Hwang, S. et al. Hollow ZIF-8 nanoparticles improve the permeability of mixed matrix membranes for CO2/CH4 gas separation. J. Membr. Sci. 480, 11–19 (2015).

    Article  CAS  Google Scholar 

  71. Yang, Q. et al. Metal-organic framework derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew. Chem. Int. Ed. Engl. 58, 3511–3515 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Yang, H. et al. Tunable synthesis of hollow metal-nitrogen carbon capsules for efficient oxygen reduction catalysis in proton exchange membrane fuel cells. ACS Nano 13, 8087–8098 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Jayaprakash, N. et al. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem. Int. Ed. Engl. 50, 5904–5908 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Zhang, M. et al. Metal-organic framework derived Co3O4/C@SiO2 yolk-shell nanoreactors with enhanced catalytic performance. J. Mater. Chem. A. 6, 11226–11235 (2018).

    Article  CAS  Google Scholar 

  75. Wang, C. et al. Metal-organic framework one-dimensional fibers as efficient catalysts for activating peroxymonosulfate. Chem. Eng. J. 330, 262–271 (2017).

    Article  CAS  Google Scholar 

  76. Li, X. et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis. J. Am. Chem. Soc. 140, 12469–12475 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Khan, M. A. N. et al. Metal-organic framework-derived hollow Co3O4/carbon as efficient catalyst for peroxymonosulfate activation. Chem. Eng. J. 363, 234–246 (2019).

    Article  Google Scholar 

  78. Huang, Z. et al. Stable core-shell ZIF-8@ZIF-67 MOFs photocatalyst for highly efficient degradation of organic pollutant and hydrogen evolution. J. Mater. Res. 36, 602–614 (2021).

    Article  CAS  Google Scholar 

  79. Chen, H. et al. Hollow-ZIF-templated formation of a ZnO@C-N-Co core-shell nanostructure for highly efficient pollutant photodegradation. J. Mater. Chem. A 5, 9937–9945 (2017).

    Article  CAS  Google Scholar 

  80. Huang, M. et al. MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage. J. Mater. Chem. A 5, 266–274 (2017).

    Article  CAS  Google Scholar 

  81. Hu, Z. et al. One-step conversion from core-shell metal-organic framework materials to cobalt and nitrogen codoped carbon nanopolyhedra with hierarchically porous structure for highly efficient oxygen reduction. ACS Appl. Mater. Interfaces 9, 16109–16116 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Pan, Y. et al. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 140, 2610–2618 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Xia, W. et al. Highly ordered macroporous dual-element-doped carbon from metal-organic frameworks for catalyzing oxygen reduction. Chem. Sci. 11, 9584–9592 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sun, T. et al. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proc. Natl Acad. Sci. USA 115, 12692–12697 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim, M. et al. Efficient lithium-ion storage using a heterostructured porous carbon framework and its in situ transmission electron microscopy study. Chem. Commun. 58, 863–866 (2022).

    Article  CAS  Google Scholar 

  86. Liu, C. et al. Structural design and mechanism analysis of hierarchical porous carbon fibers for advanced energy and environment applications. J. Mater. Chem. A. 10, 10–49 (2022).

    Article  Google Scholar 

  87. Lee, J. et al. Hierarchical porous carbon electrodes with sponge-like edge structures for the sensitive electrochemical detection of heavy metals. Sensors 21, 1346 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. He, W. et al. Integrated textile sensor patch for real-time and multiplex sweat analysis. Sci. Adv. 5, 1–8 (2019).

    Article  Google Scholar 

  89. Yan, J. et al. Multifunctional flexible membranes for sponge-like porous carbon nanofibers with high conductivity. Nat. Commun. 10, 5582 (2019).

    Article  Google Scholar 

  90. Cravillon, J. et al. Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy. CrystEngComm 14, 492–498 (2012).

    Article  CAS  Google Scholar 

  91. Avci, C. et al. Post-synthetic anisotropic wet-chemical etching of colloidal sodalite ZIF crystals. Angew. Chem. Int. Ed. Engl. 54, 14417–14421 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Salunkhe, R. R. et al. A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte. Chem. Commun. 52, 4764–4767 (2016).

    Article  CAS  Google Scholar 

  93. Stoller, M. D. & Ruoff, R. S. Best practice methods for determining an electrode material’s performance of ultracapacitors. Energy Environ. Sci. 3, 1294–1301 (2010).

    Article  CAS  Google Scholar 

  94. Marpaung, F. et al. Gram-scale synthesis of bimetallic ZIFs and their thermal conversion to nanoporous carbon materials. Nanomaterials (Basel) 9, 1796 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Gadipelli, S. et al. Switching effective oxygen reduction and evolution performance by controlled graphitization of a cobalt-nitrogen-carbon framework system. Energy Environ. Sci. 9, 1661–1667 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the JST-ERATO Yamauchi Materials Space-Tectonics Project (JPMJER2003). This research was also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A3A03039037). This work was also performed in part at the Queensland node of the Australian National Fabrication Facility (ANFF-Q), a company established under the National Collaborative Research Infrastructure Strategy to provide nano and microfabrication facilities for Australian researchers.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. and J.N. proposed the research direction and guided the project. Y.Y. and J.N. developed the protocol. M.K., J.T. and C.Y. performed the experiments. M.K. and J.P.H. drafted the manuscript. J.K., A.K.N. and Y.S. analyzed morphologies. R.K., J.E. and A.A. did formal analysis. All authors contributed to the final writing and editing of the manuscript.

Corresponding authors

Correspondence to Jongbeom Na or Yusuke Yamauchi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Srinivas Gadipelli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key papers using this protocol

Young, C. et al. Phys. Chem. Chem. Phys. 18, 29308–29315 (2016): https://doi.org/10.1039/C6CP05555A

Kim, M. et al. ACS Appl. Mater. Interfaces 13, 52034–52043 (2021): https://doi.org/10.1021/acsami.1c09107

Tang, J. et al. J. Am. Chem. Soc. 137, 1572–1580 (2015): https://doi.org/10.1021/ja511539a

Kim, M. et al. ACS Appl. Mater. Interfaces 12, 34065–34073 (2020): https://doi.org/10.1021/acsami.0c07467

Extended data

Extended Data Fig. 1 Schematic illustration of different methods and their brief procedures to prepare porous carbon precursors.

a, Template-free method. b, Hard-template method. c, Soft-template method.

Extended Data Fig. 2 Scanning electron microscopy image of ZIF-8 of different particle sizes.

a, ZIF-8 of 50 nm in diameter. b, ZIF-8 of 120 nm in diameter. c, ZIF-8 of 200 nm in diameter. Scale bars in a–c: 100 nm. d, ZIF-8 of 500 nm in diameter. e, ZIF-8 of 1.5 µm in diameter. f, ZIF-8 of 4 µm in diameter. Scale bars in d–f: 2 µm. a, d and f adapted with permission from Tang, J. et al. Thermal conversion of core–shell metal–organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc. 137, 1572–1580 (2015). Copyright 2015 American Chemical Society. b adapted with permission from Kim, M. et al. KOH activated hollow ZIF-8 derived porous carbon: nanoarchitectured control for upgraded capacitive deionization and supercapacitor. ACS Appl. Mater. Interfaces 13, 52034–52043 (2021). Copyright 2021 American Chemical Society. c adapted with permission from Kim, M. et al. Tailored nanoarchitecturing of microporous ZIF-8 to hierarchically porous double-shell carbons and their intrinsic electrochemical property. ACS Appl. Mater. Interfaces 12, 34065–34073 (2020). Copyright 2020 American Chemical Society. e adapted from ref. 45 with permission from the PCCP Owner Societies.

Extended Data Fig. 3 Physical characterization of ZIF-8 and mPDA-coated ZIF-8.

a, X-ray diffraction; b, XPS spectra; c, N2 adsorption-desorption isotherms; and d, NLDFT pore-size distributions of ZIF-8, ZIF-8@mPDA-2.5 and ZIF-8@mPDA-5.0. Adapted with permission from Kim, M. et al. Tailored nanoarchitecturing of microporous ZIF-8 to hierarchically porous double-shell carbons and their intrinsic electrochemical property. ACS Appl. Mater. Interfaces 12, 34065–34073 (2020). Copyright 2020 American Chemical Society.

Extended Data Fig. 4 Device-level demonstration of a symmetric supercapacitor by using NPC as electrode material.

a, Photograph of assembled HS test cell, schematic illustration of its cross-sectional view and SEM image of NPC on the current collector. b, Gravimetric capacitance of NPC-800, NPC-900, NPC-1,000 and activated carbon. c, Mean volumetric capacitance at 0.1 A/g (left) and mean retention of volumetric capacitance from 0.1 to 2 A/g (right) of NPC-800, NPC-900, NPC-1,000 and activated carbon, with the whiskers showing the range of data obtained from five different cells.

Supplementary information

Supplementary Information

Supplementary Method 1, Supplementary Tables 1 and 2 and Supplementary References.

Reporting Summary

Source data

Source Data Fig. 6

Pore size distribution of HPC-2.5 and HPC-5.0 (https://doi.org/10.6084/m9.figshare.18515858.v1)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Xin, R., Earnshaw, J. et al. MOF-derived nanoporous carbons with diverse tunable nanoarchitectures. Nat Protoc 17, 2990–3027 (2022). https://doi.org/10.1038/s41596-022-00718-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00718-2

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing