Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Measuring DNA modifications with the comet assay: a compendium of protocols

Abstract

The comet assay is a versatile method to detect nuclear DNA damage in individual eukaryotic cells, from yeast to human. The types of damage detected encompass DNA strand breaks and alkali-labile sites (e.g., apurinic/apyrimidinic sites), alkylated and oxidized nucleobases, DNA–DNA crosslinks, UV-induced cyclobutane pyrimidine dimers and some chemically induced DNA adducts. Depending on the specimen type, there are important modifications to the comet assay protocol to avoid the formation of additional DNA damage during the processing of samples and to ensure sufficient sensitivity to detect differences in damage levels between sample groups. Various applications of the comet assay have been validated by research groups in academia, industry and regulatory agencies, and its strengths are highlighted by the adoption of the comet assay as an in vivo test for genotoxicity in animal organs by the Organisation for Economic Co-operation and Development. The present document includes a series of consensus protocols that describe the application of the comet assay to a wide variety of cell types, species and types of DNA damage, thereby demonstrating its versatility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the standard and the enzyme-modified comet assay protocols.
Fig. 2: A schematic representation of interstrand crosslinks (ICLs) formation by cisplatin and detection with a variant of the alkaline comet assay.
Fig. 3: Representative images of three comets illustrating interstrand crosslinks (ICLs) detection following cisplatin treatment.
Fig. 4: Component parts of the 12-gel chamber unit.
Fig. 5: Images illustrating the 96-gel format using GelBond film.
Fig. 6: The CometChip platform.
Fig. 7: The vertical comet system.
Fig. 8: Principle of the DNA methylation-sensitive comet assay.
Fig. 9: Visualization of all comets and BrdU-positive comets only by fluorescence microscopy, using two filters.
Fig. 10: Example pictures of different types of signals seen in comet–FISH experiments after alkaline electrophoresis using U-2 OS cells.
Fig. 11: Overview of various species and different sample types that have been used in the comet assay.
Fig. 12: Titration steps in the enzyme-modified comet assay.
Fig. 13: Representative images of comets classified in five different classes for visual scoring.
Fig. 14: Detection of DNA crosslinks in a theoretical cell culture study.
Fig. 15: Assessment of DNA lesions by inhibition of late-stage excision repair processes in a theoretical cell culture study.
Fig. 16: Examples of data output of the enzyme-modified comet assay in theoretical samples.
Fig. 17: Levels of DNA migration in assay control samples from a biomonitoring study, encompassing 11 d of comet assay experiments.
Fig. 18: Example results from a study of Fpg-sensitive sites after exposure to diesel exhaust particles in cultured human HepG2 cells.

Similar content being viewed by others

Data availability

The majority of the data shown here as examples or anticipated results are available in the original papers. Figures 12 and 1416 are theoretical results, which are inspired by unpublished work from the authors’ laboratories. Other supporting data are available upon reasonable request to the corresponding author.

References

  1. Olive, P., Banáth, J. & Durand, R. Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the ‘comet’ assay. Radiat. Res. 122, 86–94 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Neri, M. et al. Worldwide interest in the comet assay: a bibliometric study. Mutagenesis 30, 155–163 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. de Lapuente, J. et al. The comet assay and its applications in the field of ecotoxicology: a mature tool that continues to expand its perspectives. Front. Genet. 6, 180 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gajski, G. et al. The comet assay in animal models: from bugs to whales—(Part 1 Invertebrates). Mutat. Res. Rev. Mutat. Res. 779, 82–113 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Gajski, G. et al. The comet assay in animal models: from bugs to whales—(Part 2 Vertebrates). Mutat. Res. Rev. Mutat. Res. 781, 130–164 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. McKelvey-Martin, V. J. et al. The single cell gel electrophoresis assay (comet assay): a European review. Mutat. Res. Mol. Mech. Mutagen. 288, 47–63 (1993).

    Article  CAS  Google Scholar 

  7. Tice, R. R. et al. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen. 35, 206–221 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. OECD. Test No. 489: In Vivo Mammalian Alkaline Comet Assay (OECD Publishing, 2014).

  9. ESCODD (European Standards Committee on Oxidative DNA Damage). Comparative analysis of baseline 8-oxo-7,8-dihydroguanine in mammalian cell DNA, by different methods in different laboratories: an approach to consensus. Carcinogenesis 23, 2129–2133 (2002).

  10. ESCODD (European Standards Committee on Oxidative DNA Damage). Measurement of DNA oxidation in human cells by chromatographic and enzymic methods. Free Radic. Biol. Med. 34, 1089–1099 (2003).

  11. Gedik, C. M. & Collins, A. Establishing the background level of base oxidation in human lymphocyte DNA: results of an interlaboratory validation study. FASEB J. 19, 82–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Møller, P., Moller, L., Godschalk, R. W. L. & Jones, G. D. D. Assessment and reduction of comet assay variation in relation to DNA damage: studies from the European Comet Assay Validation Group. Mutagenesis 25, 109–111 (2010).

    Article  PubMed  Google Scholar 

  13. Forchhammer, L. et al. Variation in the measurement of DNA damage by comet assay measured by the ECVAG inter-laboratory validation trial. Mutagenesis 25, 113–123 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Forchhammer, L. et al. Inter-laboratory variation in DNA damage using a standard comet assay protocol. Mutagenesis 27, 665–672 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Johansson, C. et al. An ECVAG trial on assessment of oxidative damage to DNA measured by the comet assay. Mutagenesis 25, 125–132 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Godschalk, R. W. L. et al. DNA-repair measurements by use of the modified comet assay: an inter-laboratory comparison within the European Comet Assay Validation Group (ECVAG). Mutat. Res. Toxicol. Environ. Mutagen. 757, 60–67 (2013).

    Article  CAS  Google Scholar 

  17. Godschalk, R. W. L. et al. Variation of DNA damage levels in peripheral blood mononuclear cells isolated in different laboratories. Mutagenesis 29, 241–249 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Ersson, C. et al. An ECVAG inter-laboratory validation study of the comet assay: inter-laboratory and intra-laboratory variations of DNA strand breaks and FPG-sensitive sites in human mononuclear cells. Mutagenesis 28, 279–286 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Møller, P. et al. Potassium bromate as positive assay control for the Fpg-modified comet assay. Mutagenesis 35, 341–348 (2020).

    Article  PubMed  Google Scholar 

  20. Azqueta, A. et al. Application of the comet assay in human biomonitoring: an hCOMET perspective. Mutat. Res. Mutat. Res. 783, 108288 (2020).

    Article  CAS  Google Scholar 

  21. Azqueta, A. et al. Technical recommendations to perform the alkaline standard and enzyme-modified comet assay in human biomonitoring studies. Mutat. Res. Toxicol. Environ. Mutagen. 843, 24–32 (2019).

    Article  CAS  Google Scholar 

  22. Vodenkova, S. et al. An optimized comet-based in vitro DNA repair assay to assess base and nucleotide excision repair activity. Nat. Protoc. 15, 3844–3878 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Møller, P. et al. Minimum Information for Reporting on the Comet Assay (MIRCA): recommendations for describing comet assay procedures and results. Nat. Protoc. 15, 3817–3826 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Olive, P. L. & Banáth, J. P. The comet assay: a method to measure DNA damage in individual cells. Nat. Protoc. 1, 23–29 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Ostling, O. & Johanson, K. J. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem. Biophys. Res. Commun. 123, 291–298 (1984).

    Article  CAS  PubMed  Google Scholar 

  26. Singh, N. P., McCoy, M. T., Tice, R. R. & Schneider, E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175, 184–191 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. Møller, P. The comet assay: ready for 30 more years. Mutagenesis 33, 1–7 (2018).

    Article  PubMed  Google Scholar 

  28. Olive, P. L., Wlodek, D. & Banáth, J. P. DNA double-strand breaks measured in individual cells subjected to gel electrophoresis. Cancer Res. 51, 4671–4676 (1991).

    CAS  PubMed  Google Scholar 

  29. Shaposhnikov, S. et al. Twelve-gel slide format optimised for comet assay and fluorescent in situ hybridisation. Toxicol. Lett. 195, 31–34 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Gutzkow, K. B. et al. High-throughput comet assay using 96 minigels. Mutagenesis 28, 333–340 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Watson, C. et al. High-throughput screening platform for engineered nanoparticle-mediated genotoxicity using CometChip technology. ACS Nano 8, 2118–2133 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Collins, A. R. Measuring oxidative damage to DNA and its repair with the comet assay. Biochim. Biophys. Acta 1840, 794–800 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Collins, A. R. Investigating oxidative DNA damage and its repair using the comet assay. Mutat. Res. Mutat. Res. 681, 24–32 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Muruzabal, D., Collins, A. & Azqueta, A. The enzyme-modified comet assay: past, present and future. Food Chem. Toxicol. 147, 111865 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Wu, J. H. & Jones, N. J. Assessment of DNA interstrand crosslinks using the modified alkaline comet assay. Methods Mol. Biol. 817, 165–181 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Merk, O. & Speit, G. Detection of crosslinks with the comet assay in relationship to genotoxicity and cytotoxicity. Environ. Mol. Mutagen. 33, 167–172 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Spanswick, V. J., Hartley, J. M. & Hartley, J. A. in Drug–DNA Interaction Protocols. Methods in Molecular Biology (Methods and Protocols) (ed. Fox, K.) 267–282 (Humana Press, 2010).

  38. Shaposhnikov, S., Frengen, E. & Collins, A. R. Increasing the resolution of the comet assay using fluorescent in situ hybridization—a review. Mutagenesis 24, 383–389 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Glei, M., Hovhannisyan, G. & Pool-Zobel, B. L. Use of comet–FISH in the study of DNA damage and repair: review. Mutat. Res. 681, 33–43 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Horváthová, E., Dusinská, M., Shaposhnikov, S. & Collins, A. R. DNA damage and repair measured in different genomic regions using the comet assay with fluorescent in situ hybridization. Mutagenesis 19, 269–276 (2004).

    Article  PubMed  Google Scholar 

  41. Spivak, G. Fluorescence in situ hybridization (FISH). Methods Mol. Biol. 659, 129–145 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Townsend, T. A., Parrish, M. C., Engelward, B. P. & Manjanatha, M. G. The development and validation of EpiComet-Chip, a modified high-throughput comet assay for the assessment of DNA methylation status. Environ. Mol. Mutagen. 58, 508–521 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Perotti, A., Rossi, V., Mutti, A. & Buschini, A. Methy-sens Comet assay and DNMTs transcriptional analysis as a combined approach in epigenotoxicology. Biomarkers 20, 64–70 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. McKinnon, P. J. & Caldecott, K. W. DNA strand break repair and human genetic disease. Annu. Rev. Genomics Hum. Genet. 8, 37–55 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Chatterjee, N. & Walker, G. C. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen. 58, 235–263 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cheng, K., Cahill, D., Kasai, H., Nishimura, S. & Loeb, L. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G––T and A––C substitutions. J. Biol. Chem. 267, 166–172 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Collins, A. R., Duthie, S. J. & Dobson, V. L. Direct enzymic detection of endogenous oxidative base damage in human lymphocyte dna. Carcinogenesis 14, 1733–1735 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Dusinska, M. & Collins, A. Detection of oxidised purines and UV-induced photoproducts in DNA of single cells, by inclusion of lesion-specific enzymes in the comet assay. Altern. Lab. Anim. 24, 405–411 (1996).

    Article  Google Scholar 

  49. Smith, C. C., O’Donovan, M. R. & Martin, E. A. hOGG1 recognizes oxidative damage using the comet assay with greater specificity than FPG or ENDOIII. Mutagenesis 21, 185–190 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Evans, M. D. et al. Detection of purine lesions in cellular DNA using single cell gel electrophoresis with Fpg protein. Biochem. Soc. Trans. 23, 434S (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Muruzabal, D., Langie, S. A. S., Pourrut, B. & Azqueta, A. The enzyme-modified comet assay: enzyme incubation step in 2 vs 12-gels/slide systems. Mutat. Res. Toxicol. Environ. Mutagen. 845, 402981 (2019).

    Article  CAS  Google Scholar 

  52. Collins, A., Dusinská, M. & Horská, A. Detection of alkylation damage in human lymphocyte DNA with the comet assay. Acta Biochim. Pol. 48, 11–14 (2001).

    Article  Google Scholar 

  53. Hašplová, K. et al. DNA alkylation lesions and their repair in human cells: modification of the comet assay with 3-methyladenine DNA glycosylase (AlkD). Toxicol. Lett. 208, 76–81 (2012).

    Article  PubMed  Google Scholar 

  54. Muruzabal, D. et al. Novel approach for the detection of alkylated bases using the enzyme-modified comet assay. Toxicol. Lett. 330, 108–117 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Connor, T. R. O. Purification and characterization of human 3-methyladenine-DNA glycosylase. Nucleic Acids Res. 21, 5561–5569 (1993).

    Article  Google Scholar 

  56. Lee, C.-Y. I. et al. Recognition and processing of a new repertoire of DNA substrates by human 3-methyladenine DNA glycosylase (AAG). Biochemistry 48, 1850–1861 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Azqueta, A., Arbillaga, L., Lopez de Cerain, A. & Collins, A. Enhancing the sensitivity of the comet assay as a genotoxicity test, by combining it with bacterial repair enzyme FPG. Mutagenesis 28, 271–277 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Hansen, S. H. et al. Using the comet assay and lysis conditions to characterize DNA lesions from the acrylamide metabolite glycidamide. Mutagenesis 33, 31–39 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Speit, G., Schütz, P., Bonzheim, I., Trenz, K. & Hoffmann, H. Sensitivity of the FPG protein towards alkylation damage in the comet assay. Toxicol. Lett. 146, 151–158 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Noll, D. M., Mason, T. M. & Miller, P. S. Formation and repair of interstrand cross-links in DNA. Chem. Rev. 106, 277–301 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Folmer, V., Soares, J. C. M., Gabriel, D. & Rocha, J. B. T. A high fat diet inhibits δ-aminolevulinate dehydratase and increases lipid peroxidation in mice (Mus musculus). J. Nutr. 133, 2165–2170 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Ljunggren, B. Severe phototoxic burn following celery ingestion. Arch. Dermatol. 126, 1334–1336 (1990).

    Article  CAS  PubMed  Google Scholar 

  63. Bennetts, L. E. et al. Impact of estrogenic compounds on DNA integrity in human spermatozoa: evidence for cross-linking and redox cycling activities. Mutat. Res. Mol. Mech. Mutagen. 641, 1–11 (2008).

    Article  CAS  Google Scholar 

  64. Dextraze, M.-E., Gantchev, T., Girouard, S. & Hunting, D. DNA interstrand cross-links induced by ionizing radiation: an unsung lesion. Mutat. Res. Rev. Mutat. Res. 704, 101–107 (2010).

    Article  CAS  Google Scholar 

  65. Olive, P. L. & Banáth, J. P. Sizing highly fragmented DNA in individual apoptotic cells using the comet assay and a DNA crosslinking agent. Exp. Cell Res. 221, 19–26 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Collins, A. R. et al. UV-sensitive rodent mutant cell lines of complementation groups 6 and 8 differ phenotypically from their human counterparts. Environ. Mol. Mutagen. 29, 152–160 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Collins, A. DNA repair in ultraviolet-irradiated HeLa cells is disrupted by aphidicolin. Biochim. Biophys. Acta Gene Struct. Expr. 741, 341–347 (1983).

    Article  CAS  Google Scholar 

  68. Gedik, C. M., Ewen, S. W. B. & Collins, A. R. Single-cell gel electrophoresis applied to the analysis of UV-C damage and its repair in human cells. Int. J. Radiat. Biol. 62, 313–320 (1992).

    Article  CAS  PubMed  Google Scholar 

  69. Baranovskiy, A. G. et al. Structural basis for inhibition of DNA replication by aphidicolin. Nucleic Acids Res. 42, 14013–14021 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cheng, C. H. & Kuchta, R. D. DNA polymerase epsilon: aphidicolin inhibition and the relationship between polymerase and exonuclease activity. Biochemistry 32, 8568–8574 (1993).

    Article  CAS  PubMed  Google Scholar 

  71. Goscin, L. P. & Byrnes, J. J. DNA polymerase delta: one polypeptide, two activities. Biochemistry 21, 2513–2518 (1982).

    Article  CAS  PubMed  Google Scholar 

  72. Bausinger, J., Schütz, P., Piberger, A. L. & Speit, G. Further characterization of benzo[a]pyrene diol-epoxide (BPDE)-induced comet assay effects. Mutagenesis 31, 161–169 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Vande Loock, K., Decordier, I., Ciardelli, R., Haumont, D. & Kirsch-Volders, M. An aphidicolin-block nucleotide excision repair assay measuring DNA incision and repair capacity. Mutagenesis 25, 25–32 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Ngo, L. P. et al. Sensitive CometChip assay for screening potentially carcinogenic DNA adducts by trapping DNA repair intermediates. Nucleic Acids Res. 48, e13 (2020).

    Article  PubMed  Google Scholar 

  75. Azqueta, A. et al. A comparative performance test of standard, medium- and high-throughput comet assays. Toxicol. Vitr. 27, 768–773 (2013).

    Article  CAS  Google Scholar 

  76. Guilherme, S., Santos, M. A., Barroso, C., Gaivão, I. & Pacheco, M. Differential genotoxicity of Roundup® formulation and its constituents in blood cells of fish (Anguilla anguilla): considerations on chemical interactions and DNA damaging mechanisms. Ecotoxicology 21, 1381–1390 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Guilherme, S., Santos, M. A., Gaivão, I. & Pacheco, M. Are DNA-damaging effects induced by herbicide formulations (Roundup® and Garlon®) in fish transient and reversible upon cessation of exposure? Aquat. Toxicol. 155, 213–221 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Brunborg, G. et al. High throughput sample processing and automated scoring. Front. Genet. 5, 373 (2014).

  79. McNamee, J., McLean, J., Ferrarotto, C. & Bellier, P. Comet assay: rapid processing of multiple samples. Mutat. Res. Toxicol. Environ. Mutagen. 466, 63–69 (2000).

    Article  CAS  Google Scholar 

  80. Perdry, H. et al. Validation of Gelbond® high-throughput alkaline and Fpg-modified comet assay using a linear mixed model. Environ. Mol. Mutagen. 59, 595–602 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Enciso, J. M. et al. Standardisation of the in vitro comet assay: influence of lysis time and lysis solution composition on the detection of DNA damage induced by X-rays. Mutagenesis 33, 25–30 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Wood, D. K., Weingeist, D. M., Bhatia, S. N. & Engelward, B. P. Single cell trapping and DNA damage analysis using microwell arrays. Proc. Natl Acad. Sci. USA 107, 10008–10013 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Weingeist, D. M. et al. Single-cell microarray enables high-throughput evaluation of DNA double-strand breaks and DNA repair inhibitors. Cell Cycle 12, 907–915 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ge, J. et al. Micropatterned comet assay enables high throughput and sensitive DNA damage quantification. Mutagenesis 30, 11–19 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Ge, J. et al. Standard fluorescent imaging of live cells is highly genotoxic. Cytom. Part A 83A, 552–560 (2013).

    Article  CAS  Google Scholar 

  86. Seo, J.-E. et al. Quantitative comparison of in vitro genotoxicity between metabolically competent HepaRG cells and HepG2 cells using the high-throughput high-content CometChip assay. Arch. Toxicol. 93, 1433–1448 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Mutamba, J. T. et al. XRCC1 and base excision repair balance in response to nitric oxide. DNA Repair 10, 1282–1293 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chao, C., Ngo, L. P. & Engelward, B. P. SpheroidChip: patterned agarose microwell compartments harboring HepG2 spheroids are compatible with genotoxicity testing. ACS Biomater. Sci. Eng. 6, 2427–2439 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chao, C. & Engelward, B. P. Applications of CometChip for environmental health studies. Chem. Res. Toxicol. 33, 1528–1538 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Karbaschi, M. & Cooke, M. S. Novel method for the high-throughput processing of slides for the comet assay. Sci. Rep. 4, 7200 (2015).

    Article  Google Scholar 

  91. Lewies, A., Van Dyk, E., Wentzel, J. F. & Pretorius, P. J. Using a medium-throughput comet assay to evaluate the global DNA methylation status of single cells. Front. Genet. 5, 215 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wentzel, J. F. et al. Assessing the DNA methylation status of single cells with the comet assay. Anal. Biochem. 400, 190–194 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Pogribny, I., Yi, P. & James, S. J. A sensitive new method for rapid detection of abnormal methylation patterns in global DNA and within CpG islands. Biochem. Biophys. Res. Commun. 262, 624–628 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Mohsen, K., Johansson, S. & Ekström, T. J. Using LUMA: a luminometric-based assay for global DNA-methylation. Epigenetics 1, 46–49 (2006).

    Article  Google Scholar 

  95. Gowher, H., Leismann, O. & Jeltsch, A. DNA of Drosophila melanogaster contains 5-methylcytosine. EMBO J. 19, 6918–6923 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhou, Y., Bui, T., Auckland, L. D. & Williams, C. G. Undermethylated DNA as a source of microsatellites from a conifer genome. Genome 45, 91–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Adamczyk, J. et al. Affected chromosome homeostasis and genomic instability of clonal yeast cultures. Curr. Genet. 62, 405–418 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Lewinska, A., Miedziak, B. & Wnuk, M. Assessment of yeast chromosome XII instability: single chromosome comet assay. Fungal Genet. Biol. 63, 9–16 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Krol, K. et al. Lack of G1/S control destabilizes the yeast genome via replication stress-induced DSBs and illegitimate recombination. J. Cell Sci. 131, jcs226480 (2018).

    Article  PubMed  Google Scholar 

  100. Cecchini, M. J., Amiri, M. & Dick, F. A. Analysis of cell cycle position in mammalian cells. J. Vis. Exp. 3491 (2012).

  101. Nagar, S., Hanley-Bowdoin, L. & Robertson, D. Host DNA replication is induced by geminivirus infection of differentiated plant cells. Plant Cell 14, 2995–3007 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mórocz, M., Gali, H., Raskó, I., Downes, C. S. & Haracska, L. Single cell analysis of human RAD18-dependent DNA post-replication repair by alkaline bromodeoxyuridine comet assay. PLoS ONE 8, e70391 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  103. McGlynn, A. P., Wasson, G., O’Connor, J., McKelvey-Martin, V. J. & Downes, C. S. The bromodeoxyuridine comet assay: detection of maturation of recently replicated DNA in individual cells. Cancer Res. 59, 5912–5916 (1999).

    CAS  PubMed  Google Scholar 

  104. McGlynn, A. P. et al. Detection of replicative integrity in small colonic biopsies using the BrdUrd comet assay. Br. J. Cancer 88, 895–901 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Guo, J., Hanawalt, P. C. & Spivak, G. Comet–FISH with strand-specific probes reveals transcription-coupled repair of 8-oxoGuanine in human cells. Nucleic Acids Res. 41, 7700–7712 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mladinic, M., Zeljezic, D., Shaposhnikov, S. A. & Collins, A. R. The use of FISH–comet to detect c-Myc and TP 53 damage in extended-term lymphocyte cultures treated with terbuthylazine and carbofuran. Toxicol. Lett. 211, 62–69 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Azevedo, F., Marques, F., Fokt, H., Oliveira, R. & Johansson, B. Measuring oxidative DNA damage and DNA repair using the yeast comet assay. Yeast 28, 55–61 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Oliveira, R. & Johansson, B. in DNA Repair Protocols, Methods in Molecular Biology (ed. Bjergbæk, L.) 101–109 (Humana Press, 2012).

  109. Santos, C. L. V., Pourrut, B. & Ferreira de Oliveira, J. M. P. The use of comet assay in plant toxicology: recent advances. Front. Genet. 6, 216 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Dhawan, A., Bajpayee, M. & Parmar, D. Comet assay: a reliable tool for the assessment of DNA damage in different models. Cell Biol. Toxicol. 25, 5–32 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Jha, A. N. Ecotoxicological applications and significance of the comet assay. Mutagenesis 23, 207–221 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Ghosh, M., Ghosh, I., Godderis, L., Hoet, P. & Mukherjee, A. Genotoxicity of engineered nanoparticles in higher plants. Mutat. Res. Toxicol. Environ. Mutagen. 842, 132–145 (2019).

    Article  CAS  Google Scholar 

  113. Lanier, C., Manier, N., Cuny, D. & Deram, A. The comet assay in higher terrestrial plant model: review and evolutionary trends. Environ. Pollut. 207, 6–20 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Bajpayee, M., Kumar, A. & Dhawan, A. in Genotoxicity Assessment: Methods and Protocols (Methods in Molecular Biology series) (eds Dhawan, A. & Bajpayee. M.) Vol 2031, 237–257 (Humana Press, 2019).

  115. Pedron, J. et al. Novel 8-nitroquinolin-2(1H)-ones as NTR-bioactivated antikinetoplastid molecules: Synthesis, electrochemical and SAR study. Eur. J. Med. Chem. 155, 135–152 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Le Hégarat, L. et al. Performance of comet and micronucleus assays in metabolic competent HepaRG cells to predict in vivo genotoxicity. Toxicol. Sci. 138, 300–309 (2014).

    Article  PubMed  Google Scholar 

  117. Cowie, H. et al. Suitability of human and mammalian cells of different origin for the assessment of genotoxicity of metal and polymeric engineered nanoparticles. Nanotoxicology 9, 57–65 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Naik, U. C., Das, M. T., Sauran, S. & Thakur, I. S. Assessment of in vitro cyto/genotoxicity of sequentially treated electroplating effluent on the human hepatocarcinoma HuH-7 cell line. Mutat. Res. Toxicol. Environ. Mutagen. 762, 9–16 (2014).

    Article  CAS  Google Scholar 

  119. Waldherr, M. et al. Use of HuH6 and other human-derived hepatoma lines for the detection of genotoxins: a new hope for laboratory animals? Arch. Toxicol. 92, 921–934 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Kruszewski, M. et al. Comet assay in neural cells as a tool to monitor DNA damage induced by chemical or physical factors relevant to environmental and occupational exposure. Mutat. Res. Toxicol. Environ. Mutagen. 845, 402990 (2019).

    Article  CAS  Google Scholar 

  121. Borm, P. J. A., Fowler, P. & Kirkland, D. An updated review of the genotoxicity of respirable crystalline silica. Part. Fibre Toxicol. 15, 23 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Bankoglu, E. E., Kodandaraman, G. & Stopper, H. A systematic review of the use of the alkaline comet assay for genotoxicity studies in human colon-derived cells. Mutat. Res. Toxicol. Environ. Mutagen. 845, 402976 (2019).

    Article  CAS  Google Scholar 

  123. Møller, P. et al. Applications of the comet assay in particle toxicology: air pollution and engineered nanomaterials exposure. Mutagenesis 30, 67–83 (2015).

    Article  PubMed  Google Scholar 

  124. Wischermann, K., Boukamp, P. & Schmezer, P. Improved alkaline comet assay protocol for adherent HaCaT keratinocytes to study UVA-induced DNA damage. Mutat. Res. Toxicol. Environ. Mutagen. 630, 122–128 (2007).

    Article  CAS  Google Scholar 

  125. García-Rodríguez, A., Vila, L., Cortés, C., Hernández, A. & Marcos, R. Effects of differently shaped TiO2NPs (nanospheres, nanorods and nanowires) on the in vitro model (Caco-2/HT29) of the intestinal barrier. Part. Fibre Toxicol. 15, 33 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Domenech, J., Hernández, A., Demir, E., Marcos, R. & Cortés, C. Interactions of graphene oxide and graphene nanoplatelets with the in vitro Caco-2/HT29 model of intestinal barrier. Sci. Rep. 10, 2793 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ventura, C. et al. Cytotoxicity and genotoxicity of MWCNT-7 and crocidolite: assessment in alveolar epithelial cells versus their coculture with monocyte-derived macrophages. Nanotoxicology 14, 479–503 (2020).

    Article  CAS  PubMed  Google Scholar 

  128. Ventura, C., Lourenço, A. F., Sousa-Uva, A., Ferreira, P. J. T. & Silva, M. J. Evaluating the genotoxicity of cellulose nanofibrils in a co-culture of human lung epithelial cells and monocyte-derived macrophages. Toxicol. Lett. 291, 173–183 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Jantzen, K. et al. Oxidative damage to DNA by diesel exhaust particle exposure in co-cultures of human lung epithelial cells and macrophages. Mutagenesis 27, 693–701 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Machado, A. R. T. et al. Cytotoxic, genotoxic, and oxidative stress-inducing effect of an l-amino acid oxidase isolated from Bothrops jararacussu venom in a co-culture model of HepG2 and HUVEC cells. Int. J. Biol. Macromol. 127, 425–432 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Žegura, B. & Filipič, M. The application of the comet assay in fish cell lines. Mutat. Res. Toxicol. Environ. Mutagen. 842, 72–84 (2019).

    Article  Google Scholar 

  132. Canedo, A. & Rocha, T. L. Zebrafish (Danio rerio) using as model for genotoxicity and DNA repair assessments: Historical review, current status and trends. Sci. Total Environ. 762, 144084 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Reeves, J. F., Davies, S. J., Dodd, N. J. F. & Jha, A. N. Hydroxyl radicals (OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat. Res. Mol. Mech. Mutagen. 640, 113–122 (2008).

    Article  CAS  Google Scholar 

  134. Fuchs, R. et al. Modification of the alkaline comet assay with human mesenchymal stem cells. Cell Biol. Int. 36, 113–117 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Tomc, J. et al. Adipose tissue stem cell-derived hepatic progenies as an in vitro model for genotoxicity testing. Arch. Toxicol. 92, 1893–1903 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Garcia, A. L. H. et al. Fluorosilicic acid induces DNA damage and oxidative stress in bone marrow mesenchymal stem cells. Mutat. Res. Toxicol. Environ. Mutagen. 861–862, 503297 (2021).

    Article  Google Scholar 

  137. Hiemstra, P. S., Grootaers, G., van der Does, A. M., Krul, C. A. M. & Kooter, I. M. Human lung epithelial cell cultures for analysis of inhaled toxicants: lessons learned and future directions. Toxicol. Vitr. 47, 137–146 (2018).

    Article  CAS  Google Scholar 

  138. Štampar, M., Tomc, J., Filipič, M. & Žegura, B. Development of in vitro 3D cell model from hepatocellular carcinoma (HepG2) cell line and its application for genotoxicity testing. Arch. Toxicol. 93, 3321–3333 (2019).

    Article  PubMed  Google Scholar 

  139. Mišík, M. et al. Use of human derived liver cells for the detection of genotoxins in comet assays. Mutat. Res. Toxicol. Environ. Mutagen. 845, 402995 (2019).

    Article  Google Scholar 

  140. Pfuhler, S. et al. Use of in vitro 3D tissue models in genotoxicity testing: strategic fit, validation status and way forward. Report of the working group from the 7th International Workshop on Genotoxicity Testing (IWGT). Mutat. Res. Toxicol. Environ. Mutagen. 850–851, 503135 (2020).

    Article  Google Scholar 

  141. Pfuhler, S. et al. A tiered approach to the use of alternatives to animal testing for the safety assessment of cosmetics: genotoxicity. A COLIPA analysis. Regul. Toxicol. Pharmacol. 57, 315–324 (2010).

    Article  PubMed  Google Scholar 

  142. Pfuhler, S. et al. The Cosmetics Europe strategy for animal-free genotoxicity testing: project status up-date. Toxicol. Vitr. 28, 18–23 (2014).

    Article  CAS  Google Scholar 

  143. Reisinger, K. et al. Validation of the 3D Skin Comet assay using full thickness skin models: transferability and reproducibility. Mutat. Res. Toxicol. Environ. Mutagen. 827, 27–41 (2018).

    Article  CAS  Google Scholar 

  144. Reus, A. A. et al. Comet assay in reconstructed 3D human epidermal skin models–investigation of intra- and inter-laboratory reproducibility with coded chemicals. Mutagenesis 28, 709–720 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Pfuhler, S. et al. Validation of the 3D reconstructed human skin comet assay, an animal-free alternative for following-up positive results from standard in vitro genotoxicity assays. Mutagenesis 36, 19–35 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Elje, E. et al. The comet assay applied to HepG2 liver spheroids. Mutat. Res. Toxicol. Environ. Mutagen. 845, 403033 (2019).

    Article  CAS  Google Scholar 

  147. Mandon, M., Huet, S., Dubreil, E., Fessard, V. & Le Hégarat, L. Three-dimensional HepaRG spheroids as a liver model to study human genotoxicity in vitro with the single cell gel electrophoresis assay. Sci. Rep. 9, 10548 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Elje, E. et al. Hepato(geno)toxicity assessment of nanoparticles in a HepG2 liver spheroid model. Nanomaterials 10, 545 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Štampar, M. et al. Hepatocellular carcinoma (HepG2/C3A) cell-based 3D model for genotoxicity testing of chemicals. Sci. Total Environ. 755, 143255 (2021).

    Article  PubMed  Google Scholar 

  150. Kooter, I. M. et al. Cellular effects in an in vitro human 3D cellular airway model and A549/BEAS-2B in vitro cell cultures following air exposure to cerium oxide particles at an air–liquid interface. Appl. Vitr. Toxicol. 2, 56–66 (2016).

    Article  CAS  Google Scholar 

  151. Strähle, U. et al. Zebrafish embryos as an alternative to animal experiments—a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod. Toxicol. 33, 128–132 (2012).

    Article  PubMed  Google Scholar 

  152. Kelly, J. R. & Benson, S. A. Inconsistent ethical regulation of larval zebrafish in research. J. Fish. Biol. 97, 324–327 (2020).

    Article  PubMed  Google Scholar 

  153. Kosmehl, T. et al. A novel contact assay for testing genotoxicity of chemicals and whole sediments in zebrafish embryos. Environ. Toxicol. Chem. 25, 2097–2106 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Deregowska, A. et al. Shifts in rDNA levels act as a genome buffer promoting chromosome homeostasis. Cell Cycle 14, 3475–3487 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Cerda, H., Hofsten, B. & Johanson, K. in Proceedings of the Workshop on Recent Advances on Detection of Irradiated Food (eds. Leonardi, M., Bessiardo, J. & Raffi, J.) 401–405 (Commission of the European Communities, 1993).

  156. Koppen, G. & Verschaeve, L. The alkaline comet test on plant cells: a new genotoxicity test for DNA strand breaks in Vicia faba root cells. Mutat. Res. Mutagen. Relat. Subj. 360, 193–200 (1996).

    CAS  Google Scholar 

  157. Einset, J. & Collins, A. R. DNA repair after X-irradiation: lessons from plants. Mutagenesis 30, 45–50 (2015).

    Article  CAS  PubMed  Google Scholar 

  158. Gichner, T., Znidar, I., Wagner, E. D. & Plewa, M. J. in The Comet Assay in Toxicology (eds. Dhawan, A. & Anderson, D.) 98–119 (Royal Society of Chemistry, 2009).

  159. Pellegri, V., Gorbi, G. & Buschini, A. Comet assay on Daphnia magna in eco-genotoxicity testing. Aquat. Toxicol. 155, 261–268 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Parrella, A., Lavorgna, M., Criscuolo, E., Russo, C. & Isidori, M. Eco-genotoxicity of six anticancer drugs using comet assay in daphnids. J. Hazard. Mater. 286, 573–580 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Russo, C., Kundi, M., Lavorgna, M., Parrella, A. & Isidori, M. Benzalkonium chloride and anticancer drugs in binary mixtures: reproductive toxicity and genotoxicity in the freshwater crustacean Ceriodaphnia dubia. Arch. Environ. Contam. Toxicol. 74, 546–556 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. Lavorgna, M., Russo, C., D’Abrosca, B., Parrella, A. & Isidori, M. Toxicity and genotoxicity of the quaternary ammonium compound benzalkonium chloride (BAC) using Daphnia magna and Ceriodaphnia dubia as model systems. Environ. Pollut. 210, 34–39 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Kundi, M. et al. Prediction and assessment of ecogenotoxicity of antineoplastic drugs in binary mixtures. Environ. Sci. Pollut. Res. 23, 14771–14779 (2016).

    Article  CAS  Google Scholar 

  164. Sario, S., Silva, A. M. & Gaivão, I. Titanium dioxide nanoparticles: toxicity and genotoxicity in Drosophila melanogaster (SMART eye-spot test and comet assay in neuroblasts). Mutat. Res. Toxicol. Environ. Mutagen. 831, 19–23 (2018).

    Article  CAS  Google Scholar 

  165. Gaivão, I. & Sierra, L. M. Drosophila comet assay: insights, uses, and future perspectives. Front. Genet. 5, 304 (2014).

  166. Marques, A. et al. Comparative genoprotection ability of wild-harvested vs. aqua-cultured Ulva rigida coupled with phytochemical profiling. Eur. J. Phycol. 56, 105–118 (2021).

    Article  CAS  Google Scholar 

  167. Bilbao, C., Ferreiro, J. A., Comendador, M. A. & Sierra, L. M. Influence of mus201 and mus308 mutations of Drosophila melanogaster on the genotoxicity of model chemicals in somatic cells in vivo measured with the comet assay. Mutat. Res. Mol. Mech. Mutagen. 503, 11–19 (2002).

    Article  CAS  Google Scholar 

  168. Mukhopadhyay, I., Chowdhuri, D. K., Bajpayee, M. & Dhawan, A. Evaluation of in vivo genotoxicity of cypermethrin in Drosophila melanogaster using the alkaline comet assay. Mutagenesis 19, 85–90 (2004).

    Article  CAS  PubMed  Google Scholar 

  169. Siddique, H. R., Chowdhuri, D. K., Saxena, D. K. & Dhawan, A. Validation of Drosophila melanogaster as an in vivo model for genotoxicity assessment using modified alkaline comet assay. Mutagenesis 20, 285–290 (2005).

    Article  CAS  PubMed  Google Scholar 

  170. Sharma, A., Shukla, A. K., Mishra, M. & Chowdhuri, D. K. Validation and application of Drosophila melanogaster as an in vivo model for the detection of double strand breaks by neutral comet assay. Mutat. Res. Toxicol. Environ. Mutagen. 721, 142–146 (2011).

    Article  CAS  Google Scholar 

  171. Ribeiro, I. P. & Gaivão, I. Efeito genotóxico do etanol em neuroblastos de Drosophila melanogaster. Rev. Port. Saúde. Pública 28, 199–204 (2010).

    Article  Google Scholar 

  172. Brennan, L. J., Haukedal, J. A., Earle, J. C., Keddie, B. & Harris, H. L. Disruption of redox homeostasis leads to oxidative DNA damage in spermatocytes of Wolbachia-infected Drosophila simulans. Insect Mol. Biol. 21, 510–520 (2012).

    Article  CAS  PubMed  Google Scholar 

  173. Verma, A., Sengupta, S. & Lakhotia, S. C. DNApol-ϵ gene is indispensable for the survival and growth of Drosophila melanogaster. Genesis 50, 86–101 (2012).

    Article  CAS  PubMed  Google Scholar 

  174. Carmona, E. R., Guecheva, T. N., Creus, A. & Marcos, R. Proposal of an in vivo comet assay using haemocytes of Drosophila melanogaster. Environ. Mol. Mutagen. 52, 165–169 (2011).

    Article  CAS  PubMed  Google Scholar 

  175. Augustyniak, M., Gladysz, M. & Dziewięcka, M. The Comet assay in insects—Status, prospects and benefits for science. Mutat. Res. Rev. Mutat. Res. 767, 67–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. Kadhim, M. A. Methodologies for monitoring the genetic effects of mutagens and carcinogens accumulated in the body of marine mussels. Rev. Aquat. Sci. 2, 83–107 (1990).

    CAS  Google Scholar 

  177. Prego-Faraldo, M. V., Valdiglesias, V., Laffon, B., Eirín-López, J. M. & Méndez, J. In vitro analysis of early genotoxic and cytotoxic effects of okadaic acid in different cell types of the mussel Mytilus galloprovincialis. J. Toxicol. Environ. Heal. Part A 78, 814–824 (2015).

    Article  CAS  Google Scholar 

  178. Jha, A. N., Dogra, Y., Turner, A. & Millward, G. E. Impact of low doses of tritium on the marine mussel, Mytilus edulis: genotoxic effects and tissue-specific bioconcentration. Mutat. Res. Toxicol. Environ. Mutagen. 586, 47–57 (2005).

    Article  CAS  Google Scholar 

  179. Nacci, D. E., Cayula, S. & Jackim, E. Detection of DNA damage in individual cells from marine organisms using the single cell gel assay. Aquat. Toxicol. 35, 197–210 (1996).

    Article  CAS  Google Scholar 

  180. Steinert, S. A. Contribution of apoptosis to observed DNA damage in mussel cells. Mar. Environ. Res. 42, 253–259 (1996).

    Article  CAS  Google Scholar 

  181. Wilson, J., Pascoe, P., Parry, J. & Dixon, D. Evaluation of the comet assay as a method for the detection of DNA damage in the cells of a marine invertebrate, Mytilus edulis L. (Mollusca: Pelecypoda). Mutat. Res. Mol. Mech. Mutagen. 399, 87–95 (1998).

    Article  CAS  Google Scholar 

  182. Mitchelmore, C. & Chipman, J. DNA strand breakage in aquatic organisms and the potential value of the comet assay in environmental monitoring. Mutat. Res. Mol. Mech. Mutagen. 399, 135–147 (1998).

    Article  CAS  Google Scholar 

  183. Frenzilli, G., Nigro, M. & Lyons, B. The comet assay for the evaluation of genotoxic impact in aquatic environments. Mutat. Res. Rev. Mutat. Res. 681, 80–92 (2009).

    Article  CAS  Google Scholar 

  184. Gentile, L., Cebrià, F. & Bartscherer, K. The planarian flatworm: an in vivo model for stem cell biology and nervous system regeneration. Dis. Model. Mech. 4, 12–19 (2011).

    Article  CAS  PubMed  Google Scholar 

  185. Guecheva, T., Henriques, J. A. & Erdtmann, B. Genotoxic effects of copper sulphate in freshwater planarian in vivo, studied with the single-cell gel test (comet assay). Mutat. Res. Toxicol. Environ. Mutagen. 497, 19–27 (2001).

    Article  CAS  Google Scholar 

  186. Stevens, A.-S. et al. Planarians customize their stem cell responses following genotoxic stress as a function of exposure time and regenerative state. Toxicol. Sci. 162, 251–263 (2018).

    Article  CAS  PubMed  Google Scholar 

  187. Peiris, T. H. et al. Regional signals in the planarian body guide stem cell fate in the presence of genomic instability. Development 143, 1697–1709 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Thiruvalluvan, M., Barghouth, P. G., Tsur, A., Broday, L. & Oviedo, N. J. SUMOylation controls stem cell proliferation and regional cell death through Hedgehog signaling in planarians. Cell. Mol. Life Sci. 75, 1285–1301 (2018).

    Article  CAS  PubMed  Google Scholar 

  189. Yin, S. et al. SmedOB1 is required for planarian homeostasis and regeneration. Sci. Rep. 6, 34013 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Eyambe, G. S., Goven, A. J., Fitzpatrick, L. C., Venables, B. J. & Cooper, E. L. A non-invasive technique for sequential collection of earthworm (Lumbricus terrestris) leukocytes during subchronic immunotoxicity studies. Lab. Anim. 25, 61–67 (1991).

    Article  CAS  PubMed  Google Scholar 

  191. Verschaeve, L. & Gilles, J. Single cell gel electrophoresis assay in the earthworm for the detection of genotoxic compounds in soils. Bull. Environ. Contam. Toxicol. 54, 112–119 (1995).

    Article  CAS  PubMed  Google Scholar 

  192. Reinecke, S. A. & Reinecke, A. J. The comet assay as biomarker of heavy metal genotoxicity in earthworms. Arch. Environ. Contam. Toxicol. 46, 208–215 (2004).

    Article  CAS  PubMed  Google Scholar 

  193. Lourenço, J. I. et al. Genotoxic endpoints in the earthworms sub-lethal assay to evaluate natural soils contaminated by metals and radionuclides. J. Hazard. Mater. 186, 788–795 (2011).

    Article  PubMed  Google Scholar 

  194. Lladó, S., Solanas, A. M., de Lapuente, J., Borràs, M. & Viñas, M. A diversified approach to evaluate biostimulation and bioaugmentation strategies for heavy-oil-contaminated soil. Sci. Total Environ. 435–436, 262–269 (2012).

    Article  PubMed  Google Scholar 

  195. Sforzini, S. et al. Genotoxicity assessment in Eisenia andrei coelomocytes: a study of the induction of DNA damage and micronuclei in earthworms exposed to B[a]P- and TCDD-spiked soils. Mutat. Res. Toxicol. Environ. Mutagen. 746, 35–41 (2012).

    Article  CAS  Google Scholar 

  196. Saez, G. et al. Genotoxic and oxidative responses in coelomocytes of Eisenia fetida and Hediste diversicolor exposed to lipid-coated CdSe/ZnS quantum dots and CdCl2. Environ. Toxicol. 30, 918–926 (2015).

    Article  CAS  PubMed  Google Scholar 

  197. Ramadass, K. et al. Earthworm comet assay for assessing the risk of weathered petroleum hydrocarbon contaminated soils: need to look further than target contaminants. Arch. Environ. Contam. Toxicol. 71, 561–571 (2016).

    Article  CAS  PubMed  Google Scholar 

  198. Jiang, X. et al. Toxicological effects of polystyrene microplastics on earthworm (Eisenia fetida). Environ. Pollut. 259, 113896 (2020).

    Article  CAS  PubMed  Google Scholar 

  199. Ralph, S., Petras, M., Pandrangi, R. & Vrzoc, M. Alkaline single-cell gel (comet) assay and genotoxicity monitoring using two species of tadpoles. Environ. Mol. Mutagen. 28, 112–120 (1996).

    Article  CAS  PubMed  Google Scholar 

  200. Cotelle S, F. J. Comet assay in genetic ecotoxicology: a review. Environ. Mol. Mutagen. 34, 246–255 (1999).

    Article  PubMed  Google Scholar 

  201. Pandrangi, R., Petras, M., Ralph, S. & Vrzoc, M. Alkaline single cell gel (comet) assay and genotoxicity monitoring using bullheads and carp. Environ. Mol. Mutagen. 26, 345–356 (1995).

    Article  CAS  PubMed  Google Scholar 

  202. Pereira, V. et al. Marine macroalgae as a dietary source of genoprotection in gilthead seabream (Sparus aurata) against endogenous and exogenous challenges. Comp. Biochem. Physiol. Part C. Toxicol. Pharmacol. 219, 12–24 (2019).

    Article  CAS  Google Scholar 

  203. Burlinson, B. et al. Fourth International Workgroup on Genotoxicity testing: results of the in vivo comet assay workgroup. Mutat. Res. Toxicol. Environ. Mutagen. 627, 31–35 (2007).

    Article  CAS  Google Scholar 

  204. Hartmann, A. et al. Recommendations for conducting the in vivo alkaline comet assay. Mutagenesis 18, 45–51 (2003).

    Article  CAS  PubMed  Google Scholar 

  205. Uno, Y. et al. JaCVAM-organized international validation study of the in vivo rodent alkaline comet assay for the detection of genotoxic carcinogens: II. Summary of definitive validation study results. Mutat. Res. Toxicol. Environ. Mutagen. 786–788, 45–76 (2015).

    Article  Google Scholar 

  206. Morita, T. et al. The JaCVAM international validation study on the in vivo comet assay: selection of test chemicals. Mutat. Res. Toxicol. Environ. Mutagen. 786–788, 14–44 (2015).

    Article  Google Scholar 

  207. Sasaki, Y. F. et al. The comet assay with multiple mouse organs: comparison of comet assay results and carcinogenicity with 208 chemicals selected from the IARC Monographs and U.S. NTP Carcinogenicity Database. Crit. Rev. Toxicol. 30, 629–799 (2000).

    Article  CAS  PubMed  Google Scholar 

  208. Uno, Y. et al. JaCVAM-organized international validation study of the in vivo rodent alkaline comet assay for the detection of genotoxic carcinogens: I. Summary of pre-validation study results. Mutat. Res. Toxicol. Environ. Mutagen. 786–788, 3–13 (2015).

    Article  Google Scholar 

  209. Pool-Zobel, B. L. et al. Assessment of genotoxic effects by Lindane. Food Chem. Toxicol. 31, 271–283 (1993).

    Article  CAS  PubMed  Google Scholar 

  210. Giovannelli, L., Decorosi, F., Dolara, P. & Pulvirenti, L. Vulnerability to DNA damage in the aging rat substantia nigra: a study with the comet assay. Brain Res. 969, 244–247 (2003).

    Article  CAS  PubMed  Google Scholar 

  211. Vestergaard, S., Loft, S. & Møller, P. Role of inducible nitrogen oxide synthase in benzene-induced oxidative DNA damage in the bone marrow of mice. Free Radic. Biol. Med. 32, 481–484 (2002).

    Article  CAS  PubMed  Google Scholar 

  212. Doak, S. H. & Dusinska, M. NanoGenotoxicology: present and the future. Mutagenesis 32, 1–4 (2017).

    Article  CAS  PubMed  Google Scholar 

  213. Risom, L., Møller, P., Kristjansen, P., Loft, S. & Vogel, U. X-ray-induced oxidative stress: DNA damage and gene expression of HO-1, ERCC1 and OGG1 in mouse lung. Free Radic. Res. 37, 957–966 (2003).

    Article  CAS  PubMed  Google Scholar 

  214. Schupp, N., Schmid, U., Heidland, A. & Stopper, H. New Approaches for the Treatment of Genomic Damage in End-Stage Renal Disease. J. Ren. Nutr. 18, 127–133 (2008).

    Article  PubMed  Google Scholar 

  215. Gunasekarana, V. A comprehensive review on clinical applications of comet assay. J. Clin. Diagnostic Res. 9, GE01–GE05 (2015).

    Google Scholar 

  216. Gajski, G. et al. Analysis of health-related biomarkers between vegetarians and non-vegetarians: a multi-biomarker approach. J. Funct. Foods 48, 643–653 (2018).

    Article  CAS  Google Scholar 

  217. Fagundes, G. E. et al. Vitamin D3 as adjuvant in the treatment of type 2 diabetes mellitus: modulation of genomic and biochemical instability. Mutagenesis 34, 135–145 (2019).

    Article  CAS  PubMed  Google Scholar 

  218. Macan, T. P. et al. Brazil nut prevents oxidative DNA damage in type 2 diabetes patients. Drug Chem. Toxicol. 45, 1066–1072 (2022).

    Article  CAS  PubMed  Google Scholar 

  219. Kuchařová, M. et al. Comet assay and its use for evaluating oxidative DNA damage in some pathological states. Physiol. Res. 68, 1–15 (2019).

    Article  PubMed  Google Scholar 

  220. Møller, P., Stopper, H. & Collins, A. R. Measurement of DNA damage with the comet assay in high-prevalence diseases: current status and future directions. Mutagenesis 35, 5–18 (2020).

    PubMed  Google Scholar 

  221. Gomolka, M. et al. Age-dependent differences in DNA damage after in vitro CT exposure. Int. J. Radiat. Biol. 94, 272–281 (2018).

    Article  CAS  PubMed  Google Scholar 

  222. Ziegler, B. L. et al. Short-term effects of early-acting and multilineage hematopoietic growth factors on the repair and proliferation of irradiated pure cord blood (CB) CD34 hematopoietic progenitor cells. Int. J. Radiat. Oncol. 40, 1193–1203 (1998).

    Article  CAS  Google Scholar 

  223. Wyatt, N. et al. In vitro susceptibilities in lymphocytes from mothers and cord blood to the monofunctional alkylating agent EMS. Mutagenesis 22, 123–127 (2007).

    Article  CAS  PubMed  Google Scholar 

  224. Wang, L. et al. Characterization of placenta-derived mesenchymal stem cells cultured in autologous human cord blood serum. Mol. Med. Rep. 6, 760–766 (2012).

    Article  CAS  PubMed  Google Scholar 

  225. Menon, R. et al. Senescence of primary amniotic cells via oxidative DNA damage. PLoS ONE 8, e83416 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Želježić, D., Herceg Romanić, S., Klinčić, D., Matek Sarić, M. & Letinić, J. G. Persistent organochlorine pollutants in placentas sampled from women in Croatia and an evaluation of their DNA damaging potential in vitro. Arch. Environ. Contam. Toxicol. 74, 284–291 (2018).

    Article  PubMed  Google Scholar 

  227. Chao, M.-R. et al. Biomarkers of nucleic acid oxidation—a summary state-of-the-art. Redox Biol. 42, 101872 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Møller, P. et al. Collection and storage of human white blood cells for analysis of DNA damage and repair activity using the comet assay in molecular epidemiology studies. Mutagenesis 36, 193–212 (2021).

    Article  PubMed  Google Scholar 

  229. Collins, A. R. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol. Biotechnol. 26, 249–261 (2004).

    Article  CAS  PubMed  Google Scholar 

  230. Ladeira, C. & Smajdova, L. The use of genotoxicity biomarkers in molecular epidemiology: applications in environmental, occupational and dietary studies. AIMS Genet. 4, 166–191 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Collins, A. R. et al. Controlling variation in the comet assay. Front. Genet. 5, 359 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Valverde, M. & Rojas, E. Environmental and occupational biomonitoring using the comet assay. Mutat. Res. Rev. Mutat. Res. 681, 93–109 (2009).

    Article  CAS  Google Scholar 

  233. Gajski, G. et al. Application of the comet assay for the evaluation of DNA damage from frozen human whole blood samples: implications for human biomonitoring. Toxicol. Lett. 319, 58–65 (2020).

    Article  CAS  PubMed  Google Scholar 

  234. Gajski, G., Gerić, M., Oreščanin, V. & Garaj-Vrhovac, V. Cytogenetic status of healthy children assessed with the alkaline comet assay and the cytokinesis-block micronucleus cytome assay. Mutat. Res. Toxicol. Environ. Mutagen. 750, 55–62 (2013).

    Article  CAS  Google Scholar 

  235. Garaj-Vrhovac, V. et al. Assessment of cytogenetic damage and oxidative stress in personnel occupationally exposed to the pulsed microwave radiation of marine radar equipment. Int. J. Hyg. Environ. Health 214, 59–65 (2011).

    Article  CAS  PubMed  Google Scholar 

  236. Gerić, M., Gajski, G., Oreščanin, V. & Garaj-Vrhovac, V. Seasonal variations as predictive factors of the comet assay parameters: a retrospective study. Mutagenesis 33, 53–60 (2018).

    Article  PubMed  Google Scholar 

  237. Azqueta, A., Shaposhnikov, S. & Collins, A. R in The Comet Assay in Toxicology (eds Dhawan, A. & Anderson, D.) Ch. 2, 57–78 (RSC Publishing, 2009).

  238. Gerić, M. et al. Cytogenetic status and oxidative stress parameters in patients with thyroid diseases. Mutat. Res. Toxicol. Environ. Mutagen. 810, 22–29 (2016).

    Article  Google Scholar 

  239. Milić, M. et al. Alkaline comet assay results on fresh and one-year frozen whole blood in small volume without cryo-protection in a group of people with different health status. Mutat. Res. Toxicol. Environ. Mutagen. 843, 3–10 (2019).

    Article  Google Scholar 

  240. Bankoglu, E. E. et al. Reduction of DNA damage in peripheral lymphocytes of obese patients after bariatric surgery-mediated weight loss. Mutagenesis 33, 61–67 (2018).

    Article  CAS  PubMed  Google Scholar 

  241. Milković, Đ. et al. Primary DNA damage assessed with the comet assay and comparison to the absorbed dose of diagnostic X-rays in children. Int. J. Toxicol. 28, 405–416 (2009).

    Article  PubMed  Google Scholar 

  242. Milić, M. et al. The hCOMET project: international database comparison of results with the comet assay in human biomonitoring. Baseline frequency of DNA damage and effect of main confounders. Mutat. Res. Rev. Mutat. Res. 787, 108371 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Giovannelli, L., Pitozzi, V., Riolo, S. & Dolara, P. Measurement of DNA breaks and oxidative damage in polymorphonuclear and mononuclear white blood cells: a novel approach using the comet assay. Mutat. Res. Toxicol. Environ. Mutagen. 538, 71–80 (2003).

    Article  CAS  Google Scholar 

  244. Martelli-Palomino, G. et al. DNA damage increase in peripheral neutrophils from patients with rheumatoid arthritis is associated with the disease activity and the presence of shared epitope. Clin. Exp. Rheumatol. 35, 247–254 (2017).

    PubMed  Google Scholar 

  245. McConnell, J. R., Crockard, A. D., Cairns, A. P. & Bell, A. L. Neutrophils from systemic lupus erythematosus patients demonstrate increased nuclear DNA damage. Clin. Exp. Rheumatol. 20, 653–660 (2003).

    Google Scholar 

  246. Wong, C. H. et al. Sevoflurane-induced oxidative stress and cellular injury in human peripheral polymorphonuclear neutrophils. Food Chem. Toxicol. 44, 1399–1407 (2006).

    Article  CAS  PubMed  Google Scholar 

  247. Zielińska-Przyjemska, M., Olejnik, A., Dobrowolska-Zachwieja, A., Łuczak, M. & Baer-Dubowska, W. DNA damage and apoptosis in blood neutrophils of inflammatory bowel disease patients and in Caco-2 cells in vitro exposed to betanin. Postepy Hig. Med. Dosw. 70, 265–271 (2016).

    Article  Google Scholar 

  248. Sul, D. et al. Single strand DNA breaks in T- and B-lymphocytes and granulocytes in workers exposed to benzene. Toxicol. Lett. 134, 87–95 (2002).

    Article  CAS  PubMed  Google Scholar 

  249. Sul, D. et al. DNA damage in T- and B-lymphocytes and granulocytes in emission inspection and incineration workers exposed to polycyclic aromatic hydrocarbons. Mutat. Res. Toxicol. Environ. Mutagen. 538, 109–119 (2003).

    Article  CAS  Google Scholar 

  250. Marino, M. et al. Impact of 12-month cryopreservation on endogenous DNA damage in whole blood and isolated mononuclear cells evaluated by the comet assay. Sci. Rep. 11, 363 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Al-Salmani, K. et al. Simplified method for the collection, storage, and comet assay analysis of DNA damage in whole blood. Free Radic. Biol. Med. 51, 719–725 (2011).

    Article  CAS  PubMed  Google Scholar 

  252. Bøhn, S. K., Vebraite, V., Shaposhnikov, S. & Collins, A. R. Isolation of leukocytes from frozen buffy coat for comet assay analysis of DNA damage. Mutat. Res. Toxicol. Environ. Mutagen. 843, 18–23 (2019).

    Article  Google Scholar 

  253. Decordier, I. et al. Genetic susceptibility of newborn daughters to oxidative stress. Toxicol. Lett. 172, 68–84 (2007).

    Article  CAS  PubMed  Google Scholar 

  254. Knudsen, L. E. & Hansen, Å. M. Biomarkers of intermediate endpoints in environmental and occupational health. Int. J. Hyg. Environ. Health 210, 461–470 (2007).

    Article  CAS  PubMed  Google Scholar 

  255. Norishadkam, M., Andishmand, S., Zavar reza, J., Zare Sakhvidi, M. J. & Hachesoo, V. R. Oxidative stress and DNA damage in the cord blood of preterm infants. Mutat. Res. Toxicol. Environ. Mutagen. 824, 20–24 (2017).

    Article  CAS  Google Scholar 

  256. Gelaleti, R. B., Damasceno, D. C., Santos, D. P., Calderon, I. M. P. & Rudge, M. V. C. Increased DNA damage is related to maternal blood glucose levels in the offspring of women with diabetes and mild gestational hyperglycemia. Reprod. Sci. 23, 318–323 (2016).

    Article  CAS  PubMed  Google Scholar 

  257. Oßwald, K., Mittas, A., Glei, M. & Pool-Zobel, B. L. New revival of an old biomarker: characterisation of buccal cells and determination of genetic damage in the isolated fraction of viable leucocytes. Mutat. Res. Rev. Mutat. Res. 544, 321–329 (2003).

    Article  Google Scholar 

  258. Feretti, D. et al. Monitoring air pollution effects on children for supporting public health policy: the protocol of the prospective cohort MAPEC study. BMJ Open 4, e006096 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Zani, C. et al. Comet test in saliva leukocytes of pre-school children exposed to air pollution in North Italy: the Respira study. Int. J. Environ. Res. Public Health 17, 3276 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Rojas, E., Lorenzo, Y., Haug, K., Nicolaissen, B. & Valverde, M. Epithelial cells as alternative human biomatrices for comet assay. Front. Genet. 5, 386 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Souto, E. B. et al. Ocular cell lines and genotoxicity assessment. Int. J. Environ. Res. Public Health 17, 2046 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Rojas, E., Valverde, M., Sordo, M. & Ostrosky-Wegman, P. DNA damage in exfoliated buccal cells of smokers assessed by the single cell gel electrophoresis assay. Mutat. Res. Toxicol. 370, 115–120 (1996).

    Article  CAS  Google Scholar 

  263. Sánchez-Alarcón, J., Milić, M., Gómez-Arroyo, S., Montiel-González, J. M. R. & Valencia-Quintana, R. in Environmental Health Risk - Hazardous Factors to Living Species (eds Larramendy, M. L. & Soloneski, S.) (IntechOpen, 2016); https://doi.org/10.5772/62760

  264. Valverde, M. et al. DNA damage in leukocytes and buccal and nasal epithelial cells of individuals exposed to air pollution in Mexico City. Environ. Mol. Mutagen. 30, 147–152 (1997).

    Article  CAS  PubMed  Google Scholar 

  265. Calderón-Garcidueñas, L. et al. 8-Hydroxy-2′-deoxyguanosine, a major mutagenic oxidative DNA lesion, and DNA strand breaks in nasal respiratory epithelium of children exposed to urban pollution. Environ. Health Perspect. 107, 469–474 (1999).

    PubMed  PubMed Central  Google Scholar 

  266. Godderis, L. et al. Influence of genetic polymorphisms on biomarkers of exposure and genotoxic effects in styrene-exposed workers. Environ. Mol. Mutagen. 44, 293–303 (2004).

    Article  CAS  PubMed  Google Scholar 

  267. Koreck, A. et al. Effects of intranasal phototherapy on nasal mucosa in patients with allergic rhinitis. J. Photochem. Photobiol. B Biol. 89, 163–169 (2007).

    Article  CAS  Google Scholar 

  268. Akkaş, H., Aydın, E., Türkoğlu-Babakurban, S., Yurtcu, E. & Yılmaz-Özbek, Ö. Effect of mometasone furoate nasal spray on the DNA of nasal mucosal cells. Turk. J. Med. Sci. 48, 339–345 (2018).

    PubMed  Google Scholar 

  269. Anderson, D. Factors that contribute to biomarker responses in humans including a study in individuals taking vitamin C supplementation. Mutat. Res. Mol. Mech. Mutagen. 480–481, 337–347 (2001).

    Article  Google Scholar 

  270. Baumeister, P., Huebner, T., Reiter, M., Schwenk-Zieger, S. & Harréus, U. Reduction of oxidative DNA fragmentation by ascorbic acid, zinc and N-acetylcysteine in nasal mucosa tissue cultures. Anticancer Res. 29, 4571–4574 (2009).

    CAS  PubMed  Google Scholar 

  271. Koehler, C. et al. Aspects of nitrogen dioxide toxicity in environmental urban concentrations in human nasal epithelium. Toxicol. Appl. Pharmacol. 245, 219–225 (2010).

    Article  CAS  PubMed  Google Scholar 

  272. Reiter, M., Rupp, K., Baumeister, P., Zieger, S. & Harréus, U. Antioxidant effects of quercetin and coenzyme Q10 in mini organ cultures of human nasal mucosa cells. Anticancer Res. 29, 33–39 (2009).

    CAS  PubMed  Google Scholar 

  273. Mrowicka, M., Zielinska-Blizniewska, H., Milonski, J., Olszewski, J. & Majsterek, I. Evaluation of oxidative DNA damage and antioxidant defense in patients with nasal polyps. Redox Rep. 20, 177–183 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Zhang, J. et al. DNA damage in lens epithelial cells and peripheral lymphocytes from age-related cataract patients. Ophthalmic Res. 51, 124–128 (2014).

    Article  CAS  PubMed  Google Scholar 

  275. Rojas, E. et al. Evaluation of DNA damage in exfoliated tear duct epithelial cells from individuals exposed to air pollution assessed by single cell gel electrophoresis assay. Mutat. Res. Toxicol. Environ. Mutagen. 468, 11–17 (2000).

    Article  CAS  Google Scholar 

  276. Gajski, G. et al. Application of the comet assay for the evaluation of DNA damage in mature sperm. Mutat. Res. Rev. Mutat. Res. 788, 108398 (2021).

    Article  CAS  PubMed  Google Scholar 

  277. Sipinen, V. et al. In vitro evaluation of baseline and induced DNA damage in human sperm exposed to benzo[a]pyrene or its metabolite benzo[a]pyrene-7,8-diol-9,10-epoxide, using the comet assay. Mutagenesis 25, 417–425 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Hamilton, T. R., dos, S. & Assumpção, M. E. O. D. Sperm DNA fragmentation: causes and identification. Zygote 28, 1–8 (2020).

    Article  PubMed  Google Scholar 

  279. Agarwal, A., Barbăroșie, C., Ambar, R. & Finelli, R. The impact of single- and double-strand DNA breaks in human spermatozoa on assisted reproduction. Int. J. Mol. Sci. 21, 3882 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Sugihara, A., Van Avermaete, F., Roelant, E., Punjabi, U. & De Neubourg, D. The role of sperm DNA fragmentation testing in predicting intra-uterine insemination outcome: a systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 244, 8–15 (2020).

    Article  CAS  PubMed  Google Scholar 

  281. Simon, L., Aston, K. I., Emery, B. R., Hotaling, J. & Carrell, D. T. Sperm DNA damage output parameters measured by the alkaline comet assay and their importance. Andrologia 49, e12608 (2017).

    Article  Google Scholar 

  282. Nicopoullos, J. et al. Novel use of COMET parameters of sperm DNA damage may increase its utility to diagnose male infertility and predict live births following both IVF and ICSI. Hum. Reprod. 34, 1915–1923 (2019).

    Article  CAS  PubMed  Google Scholar 

  283. Simon, L. et al. Clinical significance of sperm DNA damage in assisted reproduction outcome. Hum. Reprod. 25, 1594–1608 (2010).

    Article  CAS  PubMed  Google Scholar 

  284. Albert, O., Reintsch, W. E., Chan, P. & Robaire, B. HT-COMET: a novel automated approach for high throughput assessment of human sperm chromatin quality. Hum. Reprod. 31, 938–946 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Fry, R. C., Bangma, J., Szilagyi, J. & Rager, J. E. Developing novel in vitro methods for the risk assessment of developmental and placental toxicants in the environment. Toxicol. Appl. Pharmacol. 378, 114635 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Vähäkangas, K. et al. in Biomarkers in Toxicology 325–360 (Elsevier, 2014).

  287. Kohn, K. W., Ewig, R. A. G., Erickson, L. C. & Zwelling, L. A. in DNA Repair: A Laboratory Manual of Research Procedures (eds. Friedberg, E. C. & Hanawalt, P. C.) 379–401 (Marcel Dekker Inc, 1981).

  288. Ahnström, G. & Erixon, K. in DNA Repair: A Laboratory Manual of Research Procedures (eds. Friedberg, E. C. & Hanawalt, P. C.) 403–418 (Marcel Dekker Inc, 1981).

  289. Gedik, C. M., Boyle, S. P., Wood, S. G., Vaughan, N. J. & Collins, A. R. Oxidative stress in humans: validation of biomarkers of DNA damage. Carcinogenesis 23, 1441–1446 (2002).

    Article  CAS  PubMed  Google Scholar 

  290. Pflaum, M., Will, O. & Epe, B. Determination of steady-state levels of oxidative DNA base modifications in mammalian cells by means of repair endonucleases. Carcinogenesis 18, 2225–2231 (1997).

    Article  CAS  PubMed  Google Scholar 

  291. Fujiwara, H. & Ito, M. Nonisotopic cytosine extension assay: a highly sensitive method to evaluate CpG island methylation in the whole genome. Anal. Biochem. 307, 386–389 (2002).

    Article  CAS  PubMed  Google Scholar 

  292. Azqueta, A. & Collins, A. The essential comet assay: a comprehensive guide to measuring DNA damage and repair. Arch. Toxicol. 87, 949–968 (2013).

    Article  CAS  PubMed  Google Scholar 

  293. Azqueta, A. et al. The influence of scoring method on variability in results obtained with the comet assay. Mutagenesis 26, 393–399 (2011).

    Article  CAS  PubMed  Google Scholar 

  294. Møller, P. et al. On the search for an intelligible comet assay descriptor. Front. Genet. 17, 217 (2014).

    Google Scholar 

  295. Collins, A. et al. The comet assay as a tool for human biomonitoring studies: the ComNet Project. Mutat. Res. Rev. Mutat. Res. 759, 27–39 (2014).

    Article  CAS  PubMed  Google Scholar 

  296. Azqueta, A., Gutzkow, K. B., Brunborg, G. & Collins, A. R. Towards a more reliable comet assay: optimising agarose concentration, unwinding time and electrophoresis conditions. Mutat. Res. Toxicol. Environ. Mutagen. 724, 41–45 (2011).

    Article  CAS  Google Scholar 

  297. Ersson, C. & Moller, L. The effects on DNA migration of altering parameters in the comet assay protocol such as agarose density, electrophoresis conditions and durations of the enzyme or the alkaline treatments. Mutagenesis 26, 689–695 (2011).

    Article  CAS  PubMed  Google Scholar 

  298. Kumaravel, T. S., Vilhar, B., Faux, S. P. & Jha, A. N. Comet assay measurements: a perspective. Cell Biol. Toxicol. 25, 53–64 (2009).

    Article  CAS  PubMed  Google Scholar 

  299. Kumaravel, T. S. & Jha, A. N. Reliable comet assay measurements for detecting DNA damage induced by ionising radiation and chemicals. Mutat. Res. 605, 7–16 (2006).

    Article  CAS  PubMed  Google Scholar 

  300. Langie, S. A. S., Azqueta, A. & Collins, A. R. The comet assay: past, present, and future. Front. Genet. 6, 266 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  301. Kohn, K. W., Erickson, L. C. & Ewig, R. A. G. Fractionation of DNA from mammalian cells by alkaline elution. Biochemistry 15, 4629–4637 (1976).

    Article  CAS  PubMed  Google Scholar 

  302. García, O. et al. Sensitivity and variability of visual scoring in the comet assay. Mutat. Res. Mol. Mech. Mutagen. 556, 25–34 (2004).

    Google Scholar 

  303. Bonassi, S. et al. DNA damage in circulating leukocytes measured with the comet assay may predict the risk of death. Sci. Rep. 11, 16793 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Anderson, D., Yu, T.-W. & McGregor, D. B. Comet assay responses as indicators of carcinogen exposure. Mutagenesis 13, 539–555 (1998).

    Article  CAS  PubMed  Google Scholar 

  305. Bowen, D. E. et al. Evaluation of a multi-endpoint assay in rats, combining the bone-marrow micronucleus test, the comet assay and the flow-cytometric peripheral blood micronucleus test. Mutat. Res. Toxicol. Environ. Mutagen. 722, 7–19 (2011).

    Article  CAS  Google Scholar 

  306. Kirkland, D. et al. A comparison of transgenic rodent mutation and in vivo comet assay responses for 91 chemicals. Mutat. Res. Toxicol. Environ. Mutagen. 839, 21–35 (2019).

    Article  CAS  Google Scholar 

  307. Akor-Dewu, M. B. et al. Leucocytes isolated from simply frozen whole blood can be used in human biomonitoring for DNA damage measurement with the comet assay. Cell Biochem. Funct. 32, 299–302 (2014).

    Article  CAS  PubMed  Google Scholar 

  308. Ladeira, C., Koppen, G., Scavone, F. & Giovannelli, L. The comet assay for human biomonitoring: effect of cryopreservation on DNA damage in different blood cell preparations. Mutat. Res. Toxicol. Environ. Mutagen. 843, 11–17 (2019).

    Article  CAS  Google Scholar 

  309. Hininger, I. et al. Assessment of DNA damage by comet assay on frozen total blood: method and evaluation in smokers and non-smokers. Mutat. Res. Toxicol. Environ. Mutagen. 558, 75–80 (2004).

    Article  CAS  Google Scholar 

  310. Koppen, G. et al. The comet assay in human biomonitoring: cryopreservation of whole blood and comparison with isolated mononuclear cells. Mutagenesis 33, 41–47 (2018).

    Article  CAS  PubMed  Google Scholar 

  311. Bankoglu, E. E. et al. Effect of cryopreservation on DNA damage and DNA repair activity in human blood samples in the comet assay. Arch. Toxicol. 95, 1831–1841 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Azqueta, A., Enciso, J. M., Pastor, L., López de Cerain, A. & Vettorazzi, A. Applying the comet assay to fresh vs frozen animal solid tissues: a technical approach. Food Chem. Toxicol. 132, 110671 (2019).

    Article  CAS  PubMed  Google Scholar 

  313. Møller, P. et al. Searching for assay controls for the Fpg- and hOGG1-modified comet assay. Mutagenesis 33, 9–19 (2018).

    Article  PubMed  Google Scholar 

  314. Pfuhler, S., Downs, T. R., Allemang, A. J., Shan, Y. & Crosby, M. E. Weak silica nanomaterial-induced genotoxicity can be explained by indirect DNA damage as shown by the OGG1-modified comet assay and genomic analysis. Mutagenesis 32, 5–12 (2017).

    Article  CAS  PubMed  Google Scholar 

  315. Speit, G., Trenz, K., Schütz, P., Rothfuß, A. & Merk, O. The influence of temperature during alkaline treatment and electrophoresis on results obtained with the comet assay. Toxicol. Lett. 110, 73–78 (1999).

    Article  CAS  PubMed  Google Scholar 

  316. Sirota, N. P. et al. Some causes of inter-laboratory variation in the results of comet assay. Mutat. Res. Toxicol. Environ. Mutagen. 770, 16–22 (2014).

    Article  CAS  Google Scholar 

  317. Singh, N. P., Stephens, R. E. & Schneider, E. L. Modifications of alkaline microgel electrophoresis for sensitive detection of DNA damage. Int. J. Radiat. Biol. 66, 23–28 (1994).

    Article  CAS  PubMed  Google Scholar 

  318. Møller, P., Loft, S., Lundby, C. & Olsen, N. V. Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans. FASEB J. 15, 1181–1186 (2001).

    Article  PubMed  Google Scholar 

  319. Ji, Y., Karbaschi, M. & Cooke, M. S. Mycoplasma infection of cultured cells induces oxidative stress and attenuates cellular base excision repair activity. Mutat. Res. Toxicol. Environ. Mutagen. 845, 403054 (2019).

    Article  CAS  Google Scholar 

  320. Zarcone, M. C. et al. Cellular response of mucociliary differentiated primary bronchial epithelial cells to diesel exhaust. Am. J. Physiol. Cell. Mol. Physiol. 311, L111–L123 (2016).

    Article  Google Scholar 

  321. Eleršek, T., Plazar, J. & Filipič, M. A method for the assessment of DNA damage in individual, one day old, zebrafish embryo (Danio rerio), without prior cell isolation. Toxicol. Vitr. 27, 2156–2159 (2013).

    Article  Google Scholar 

  322. Martins, C. & Costa, P. M. Technical updates to the comet assay in vivo for assessing DNA damage in zebrafish embryos from fresh and frozen cell suspensions. Zebrafish 17, 220–228 (2020).

    Article  CAS  Google Scholar 

  323. Koppen, G. & Angelis, K. J. Repair of X-ray induced DNA damage measured by the comet assay in roots of Vicia faba. Environ. Mol. Mutagen. 32, 281–285 (1998).

    Article  CAS  PubMed  Google Scholar 

  324. Koppen, G., Toncelli, L., Triest, L. & Verschaeve, L. The comet assay: a tool to study alteration of DNA integrity in developing plant leaves. Mech. Ageing Dev. 110, 13–24 (1999).

    Article  CAS  PubMed  Google Scholar 

  325. Jackson, P. et al. Validation of freezing tissues and cells for analysis of DNA strand break levels by comet assay. Mutagenesis 28, 699–707 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Belpaeme, K., Cooreman, K. & Kirsch-Volders, M. Development and validation of the in vivo alkaline comet assay for detecting genomic damage in marine flatfish. Mutat. Res. Toxicol. Environ. Mutagen. 415, 167–184 (1998).

    Article  CAS  Google Scholar 

  327. Braz, M. G. & Karahalil, B. Genotoxicity of anesthetics evaluated in vivo (animals). Biomed. Res. Int. 2015, 1–8 (2015).

    Article  Google Scholar 

  328. Fernández-Bertólez, N., Azqueta, A., Pásaro, E., Laffon, B. & Valdiglesias, V. Salivary leucocytes as suitable biomatrix for the comet assay in human biomonitoring studies. Arch. Toxicol. 95, 2179–2187 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  329. Russo, C., Acito, M., Fatigoni, C., Villarini, M. & Moretti, M. B-comet assay (comet assay on buccal cells) for the evaluation of primary DNA damage in human biomonitoring studies. Int. J. Environ. Res. Public Health 17, 9234 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Fortoul, T. I. et al. Single-cell gel electrophoresis assay of nasal epithelium and leukocytes from asthmatic and nonasthmatic subjects in Mexico City. Arch. Environ. Health 58, 348–352 (2003).

    PubMed  Google Scholar 

  331. Osnes-Ringen, Ø. et al. DNA damage in lens epithelium of cataract patients in vivo and ex vivo. Acta Ophthalmol. 91, 652–656 (2013).

    Article  CAS  PubMed  Google Scholar 

  332. Olsen, A.-K. et al. Highly efficient base excision repair (BER) in human and rat male germ cells. Nucleic Acids Res. 29, 1781–1790 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Lorenzo, Y., Costa, S., Collins, A. R. & Azqueta, A. The comet assay, DNA damage, DNA repair and cytotoxicity: hedgehogs are not always dead. Mutagenesis 28, 427–432 (2013).

    Article  CAS  PubMed  Google Scholar 

  334. Henderson, L., Wolfreys, A., Fedyk, J., Bourner, C. & Windebank, S. The ability of the comet assay to discriminate between genotoxins and cytotoxins. Mutagenesis 13, 89–94 (1998).

    Article  CAS  PubMed  Google Scholar 

  335. Pfuhler, S. & Wolf, H. U. Detection of DNA-crosslinking agents with the alkaline comet assay. Environ. Mol. Mutagen. 27, 196–201 (1996).

    Article  CAS  PubMed  Google Scholar 

  336. Møller, P., Wallin, H., Dybdahl, M., Frentz, G. & Nexø, B. A. Psoriasis patients with basal cell carcinoma have more repair-mediated DNA strand-breaks after UVC damage in lymphocytes than psoriasis patients without basal cell carcinoma. Cancer Lett. 151, 187–192 (2000).

    Article  PubMed  Google Scholar 

  337. Møller, P., Knudsen, L. E., Loft, S. & Wallin, H. The comet assay as a rapid test in biomonitoring occupational exposure to DNA-damaging agents and effect of confounding factors. Cancer Epidemiol. Biomark. Prev. 9, 1005–1015 (2000).

    Google Scholar 

  338. Jensen, A. et al. Influence of the OGG1 Ser326Cys polymorphism on oxidatively damaged DNA and repair activity. Free Radic. Biol. Med. 52, 118–125 (2012).

    Article  CAS  PubMed  Google Scholar 

  339. Shaposhnikov, S. A., Salenko, V. B., Brunborg, G., Nygren, J. & Collins, A. R. Single-cell gel electrophoresis (the comet assay): loops or fragments? Electrophoresis 29, 3005–3012 (2008).

    Article  CAS  PubMed  Google Scholar 

  340. Vesterdal, L. K. et al. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles. Toxicol. Appl. Pharmacol. 274, 350–360 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the hCOMET project (COST Action, CA 15132) for support. A. Azqueta thanks the Ministry of Science and Innovation (AGL2015-70640-R and PID2020-115348RB-I00) of the Spanish Government. S.G. thanks the national funds (OE), through FCT—Fundação para a Ciência e a Tecnologia (IP, in the scope of the framework contract foreseen in the numbers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016, of 29 August, changed by Law 57/2017, of 19 July) for personal support. V.M.d.A. thanks the National Council of Technological and Scientific Development (CNPq—304203/2018-1) for personal support. D.M. thanks the program ‘Ayudas para la formación de profesorado universitario (FPU)’ of the Spanish Government for the predoctoral grant received. N.O. thanks the NIEHS Superfund Research Program ES ES027707 for personal support. J.S.-S. thanks the Government of Navarra for the predoctoral grant received. V.V. thanks the Ministerio de Educación, Cultura y Deporte (‘Beatriz Galindo’ program, BEAGAL18/00142) of the Spanish Government for personal support. M.S.C. acknowledges personal support from the National Institute of Environmental Health Sciences of the National Institutes of Health under award number: 1R41ES030274-01. This paper reflects the views of the authors and does not necessarily reflect those of the US Food and Drug Administration or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

P.M., S.V., S.A.S.L., K.B.G., M.S.C., B.E., J.F.W. and S.S. designed figures; P.M. provided anticipated results; A.C., G.G., P.M., S.V., S.A.S.L. and A. Azqueta drafted the paper and revised the manuscript; all other co-authors contributed to the Materials and Procedure sections; A.L.d.C., E.B.-R., F.J.v.S., M.S.C., S.C. and S.K. thoroughly reviewed the manuscript before submission; S.A.S.L. and A. Azqueta managed the manuscript preparation; all authors read and approved the final manuscript.

Corresponding author

Correspondence to Amaya Azqueta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Vilena Kašuba and Bryant Nelson for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Gajski, G. et al. Mutat. Res. Rev. Mutat. Res. 779, 82–113 (2019): https://doi.org/10.1016/j.mrrev.2019.02.003

Gajski, G. et al. Mutat. Res. Rev. Mutat. Res. 781, 130–164 (2019): https://doi.org/10.1016/j.mrrev.2019.04.002

Azqueta, A. et al. Mutat. Res. Rev. Mutat. Res. 783, 108288 (2020): https://doi.org/10.1016/j.mrrev.2019.108288

Gajski, G. et al. Mutat. Res. Rev. Mutat. Res. 788, 108398 (2021): https://doi.org/10.1016/j.mrrev.2021.108398

Supplementary information

Supplementary Information

Supplementary Protocols 1–13.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collins, A., Møller, P., Gajski, G. et al. Measuring DNA modifications with the comet assay: a compendium of protocols. Nat Protoc 18, 929–989 (2023). https://doi.org/10.1038/s41596-022-00754-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00754-y

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing