Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Induction of human trophoblast stem cells

Abstract

Cell reprogramming has allowed unprecedented access to human development, from virtually any genome. However, reprogramming yields pluripotent stem cells that can differentiate into all cells that form a fetus, but not extraembryonic annexes. Therefore, a cellular model allowing study of placental development from a broad genomic repertoire is lacking. Here, we describe an optimized protocol to reprogram somatic cells into human induced trophoblast stem cells (hiTSCs) and convert pluripotent stem cells into human converted TSCs (hcTSCs). This protocol enables much-needed genome-specific placental disease modeling. We also detail extravillous trophoblast and syncytiotrophoblast differentiation protocols from hiTSCs and hcTSCs, a necessary step to validate these cells. In total, this protocol takes 4 months and requires advanced cell culture skills, comparable to those necessary for somatic cell reprogramming into human induced pluripotent stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Morphological changes associated with hiTSC reprogramming and conversion.
Fig. 2: Controlling outcomes of reprogramming and conversion assays.
Fig. 3: Molecular validation of induced and converted hTSCs.
Fig. 4: Functional validation of hi/cTSC differentiation potential.

Similar content being viewed by others

Data availability

All datasets used in this paper were uploaded to the European Nucleotide Archive (https://www.ebi.ac.uk/ena/browser/view/PRJEB34037?show=reads), as specified in our previous paper5.

References

  1. Okae, H. et al. Derivation of human trophoblast stem cells. Cell Stem Cell 22, 50–63.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Haider, S. et al. Self-renewing trophoblast organoids recapitulate the developmental program of the early human placenta. Stem Cell Rep. 11, 537–551 (2018).

    Article  CAS  Google Scholar 

  3. Turco, M. Y. et al. Trophoblast organoids as a model for maternal-fetal interactions during human placentation. Nature 564, 263–267 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saha, B. et al. TEAD4 ensures postimplantation development by promoting trophoblast self-renewal: an implication in early human pregnancy loss. Proc. Natl Acad. Sci. USA 117, 17864–17875 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Castel, G. et al. Induction of human trophoblast stem cells from somatic cells and pluripotent stem cells. Cell Rep. 33, 108419 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Amita, M. et al. Complete and unidirectional conversion of human embryonic stem cells to trophoblast by BMP4. Proc. Natl Acad. Sci. USA 110, E1212–E1221 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Krendl, C. et al. GATA2/3-TFAP2A/C transcription factor network couples human pluripotent stem cell differentiation to trophectoderm with repression of pluripotency. Proc. Natl Acad. Sci. USA 114, E9579–E9588 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Horii, M. et al. Human pluripotent stem cells as a model of trophoblast differentiation in both normal development and disease. Proc. Natl Acad. Sci. USA 113, E3882–E3891 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Horii, M. et al. Modeling preeclampsia using human induced pluripotent stem cells. Sci. Rep. 11, 5877 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sheridan, M. A. et al. Early onset preeclampsia in a model for human placental trophoblast. Proc. Natl Acad. Sci. USA 116, 4336–4345 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takashima, Y. et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158, 1254–1269 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang, Y. et al. Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency. Cell 169, 243–257.e25 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Amit, M. et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227, 271–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Rossant, J. & Tam, P. P. L. Opportunities and challenges with stem cell-based embryo models. Stem Cell Rep. 16, 1031–1038 (2021).

    Article  Google Scholar 

  15. Zhou, J. et al. Modeling human peri-implantation placental development and function. Biol. Reprod. 105, 40–51 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Horii, M., Touma, O., Bui, T. & Parast, M. M. Modeling human trophoblast, the placental epithelium at the maternal fetal interface. Reproduction 160, R1–R11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moser, G., Weiss, G., Gauster, M., Sundl, M. & Huppertz, B. Evidence from the very beginning: endoglandular trophoblasts penetrate and replace uterine glands in situ and in vitro. Hum. Reprod. 30, 2747–2757 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Moser, G. et al. Extravillous trophoblasts invade more than uterine arteries: evidence for the invasion of uterine veins. Histochem. Cell Biol. 147, 353–366 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Moser, G., Drewlo, S., Huppertz, B. & Armant, D. R. Trophoblast retrieval and isolation from the cervix: origins of cervical trophoblasts and their potential value for risk assessment of ongoing pregnancies. Hum. Reprod. Update 24, 484–496 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Papuchova, H. et al. Three types of HLA-G+ extravillous trophoblasts that have distinct immune regulatory properties. Proc. Natl Acad. Sci. USA 117, 15772–15777 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pollheimer, J., Vondra, S., Baltayeva, J., Beristain, A. G. & Knöfler, M. Regulation of placental extravillous trophoblasts by the maternal uterine environment. Front. Immunol. 9, 2597 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Borbely, A. U. et al. The term basal plate of the human placenta as a source of functional extravillous trophoblast cells. Reprod. Biol. Endocrinol. 12, 7 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dong, C. et al. Derivation of trophoblast stem cells from naïve human pluripotent stem cells. Elife 9, e52504 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Genbacev, O., Joslin, R., Damsky, C. H., Polliotti, B. M. & Fisher, S. J. Hypoxia alters early gestation human cytotrophoblast differentiation/invasion in vitro and models the placental defects that occur in preeclampsia. J. Clin. Invest. 97, 540–550 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, X. et al. Reprogramming roadmap reveals route to human induced trophoblast stem cells. Nature 586, 101–107 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Tan, J. P., Liu, X. & Polo, J. M. Establishment of human induced trophoblast stem cells via reprogramming of fibroblasts Nat. Protoc. in press.

  27. Cinkornpumin, J. K. et al. Naive human embryonic stem cells can give rise to cells with a trophoblast-like transcriptome and methylome. Stem Cell Rep. 15, 198–213 (2020).

    Article  CAS  Google Scholar 

  28. Guo, G. et al. Human naive epiblast cells possess unrestricted lineage potential. Cell Stem Cell 28, 1040–1056.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gao, X. et al. Establishment of porcine and human expanded potential stem cells. Nat. Cell Biol. 21, 687–699 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kagawa, H. et al. Human blastoids model blastocyst development and implantation. Nature 601, 600–605 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, X. et al. Modelling human blastocysts by reprogramming fibroblasts into iBlastoids. Nature 591, 627–632 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Sozen, B. et al. Reconstructing aspects of human embryogenesis with pluripotent stem cells. Nat. Commun. 12, 5550 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yanagida, A. et al. Naive stem cell blastocyst model captures human embryo lineage segregation. Cell Stem Cell 28, 1016–1022.e4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu, L. et al. Blastocyst-like structures generated from human pluripotent stem cells. Nature 591, 620–626 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Kudo, Y. et al. Quantifying the syncytialisation of human placental trophoblast BeWo cells grown in vitro. Biochim. Biophys. Acta 1640, 25–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Wice, B., Menton, D., Geuze, H. & Schwartz, A. L. Modulators of cyclic AMP metabolism induce syncytiotrophoblast formation in vitro. Exp. Cell Res. 186, 306–316 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. David, L. & Polo, J. M. Phases of reprogramming. Stem Cell Res. 12, 754–761 (2014).

    Article  PubMed  Google Scholar 

  38. Takahashi, S. et al. Loss of p57KIP2 expression confers resistance to contact inhibition in human androgenetic trophoblast stem cells. Proc. Natl Acad. Sci. USA 116, 26606–26613 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jozefczuk, J., Drews, K. & Adjaye, J. Preparation of mouse embryonic fibroblast cells suitable for culturing human embryonic and induced pluripotent stem cells. J. Vis. Exp. 2012, 3854 (2012).

    Google Scholar 

  40. Kilens, S. et al. Parallel derivation of isogenic human primed and naive induced pluripotent stem cells. Nat. Commun. 9, 360 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

G.C. is a recipient of an ‘INSERM-Région Pays de la Loire’ fellowship. We acknowledge the MicroPICell, GenoA, BIRD and iPSC core facilities, all supported by Biogenouest and IBiSA, for the use of their resources and technical support. MicroPICell is a member of the national infrastructure France-Bioimaging (ANR-10-INBS-04). BIRD is a member of Institut Français de Bioinformatique (IFB) (ANR-11-INBS-0013). We thank M. Narimatsu for the tips regarding coverslip preparation.

Author information

Authors and Affiliations

Authors

Contributions

G.C. and L.D. designed experiments, and G.C. conducted them. G.C. and L.D. wrote the manuscript.

Corresponding author

Correspondence to Laurent David.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Berthold Huppertz and Michael Roberts for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Castel, G. et al. Cell Rep. 33, 108419 (2020): https://doi.org/10.1016/j.celrep.2020.108419

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castel, G., David, L. Induction of human trophoblast stem cells. Nat Protoc 17, 2760–2783 (2022). https://doi.org/10.1038/s41596-022-00744-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00744-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing