Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Enzyme-free targeted DNA demethylation using CRISPR–dCas9-based steric hindrance to identify DNA methylation marks causal to altered gene expression

Abstract

DNA methylation involves the enzymatic addition of a methyl group primarily to cytosine residues in DNA. This protocol describes how to produce complete and minimally confounded DNA demethylation of specific sites in the genome of cultured cells by clustered regularly interspaced short palindromic repeats (CRISPR)–dCas9 and without the involvement of an epigenetic-modifying enzyme, the purpose of which is the evaluation of the functional (i.e., gene expression or phenotypic) consequences of DNA demethylation of specific sites that have been previously implicated in particular pathological or physiological contexts. This protocol maximizes the ability of the easily reprogrammable CRISPR–dCas9 system to assess the impact of DNA methylation from a causal rather than correlational perspective: alternative protocols for CRISPR–dCas9-based site-specific DNA methylation or demethylation rely on the recruitment of epigenetic enzymes that exhibit additional nonspecific activities at both the targeted site and throughout the genome, confounding conclusions of causality of DNA methylation. Inhibition or loss of DNA methylation is accomplished by three consecutive lentiviral transductions. The first two lentiviruses establish stable expression of dCas9 and a guide RNA, which will physically obstruct either maintenance or de novo DNA methyltransferase activity at the guide RNA target site. A third lentivirus introduces Cre recombinase to delete the dCas9 transgene, which leads to loss of dCas9 from the target site, allowing transcription factors and/or the transcription machinery to interact with the demethylated target site. This protocol requires 3–8 months to complete owing to prolonged cell passaging times, but there is little hands-on time, and no specific skills beyond basic molecular biology techniques are necessary.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual and experimental overviews of the Procedure.
Fig. 2: Modified protocol.
Fig. 3: Recommendations for CpG positioning relative to the position of the gRNA sequence in the DNA.
Fig. 4: Schematic illustration of forward and reverse primer design for synthesis of novel gRNA plasmids by site-directed mutagenesis.
Fig. 5: Assessing deletion of dCas9 by Cre recombinase.

Similar content being viewed by others

Data availability

Uncropped agarose gel images are provided as source data. Source data are provided with this paper.

References

  1. Razin, A. & Cedar, H. DNA methylation and gene expression. Microbiol. Rev. 55, 451–458 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Luo, C., Hajkova, P. & Ecker, J. R. Dynamic DNA methylation: in the right place at the right time. Science 361, 1336–1340 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Blattler, A. et al. Global loss of DNA methylation uncovers intronic enhancers in genes showing expression changes. Genome Biol. 15, 469 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pacis, A. et al. Gene activation precedes DNA demethylation in response to infection in human dendritic cells. Proc. Natl Acad. Sci. USA 116, 6938–6943 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Broche, J., Kungulovski, G., Bashtrykov, P., Rathert, P. & Jeltsch, A. Genome-wide investigation of the dynamic changes of epigenome modifications after global DNA methylation editing. Nucleic Acids Res. 49, 158–176 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Sapozhnikov, D. M. & Szyf, M. Unraveling the functional role of DNA demethylation at specific promoters by targeted steric blockage of DNA methyltransferase with CRISPR/dCas9. Nat. Commun. 12, 5711 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Christman, J. K. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21, 5483–5495 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Klug, M. & Rehli, M. Functional analysis of promoter CpG methylation using a CpG-free luciferase reporter vector. Epigenetics 1, 127–130 (2006).

    Article  PubMed  Google Scholar 

  10. Cheishvili, D. et al. DNA methylation controls unmethylated transcription start sites in the genome in trans. Epigenomics 9, 611–633 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Laird, P. W. et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell 81, 197–205 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Ramchandani, S., MacLeod, A. R., Pinard, M., von Hofe, E. & Szyf, M. Inhibition of tumorigenesis by a cytosine-DNA, methyltransferase, antisense oligodeoxynucleotide. Proc. Natl Acad. Sci. USA 94, 684–689 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Espada, J. et al. Regulation of SNAIL1 and E-cadherin function by DNMT1 in a DNA methylation-independent context. Nucleic Acids Res. 39, 9194–9205 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Milutinovic, S., Brown, S. E., Zhuang, Q. & Szyf, M. DNA methyltransferase 1 knock down induces gene expression by a mechanism independent of DNA methylation and histone deacetylation. J. Biol. Chem. 279, 27915–27927 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Qiu, X. et al. Upregulation of DNMT1 mediated by HBx suppresses RASSF1A expression independent of DNA methylation. Oncol. Rep. 31, 202–208 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Tsellou, E., Michailidi, C., Pafiti, A. & Troungos, C. DNA methylation-independent regulation of p16 in epithelial cells during mouse mammary gland development. Epigenetics 3, 143–148 (2008).

    Article  PubMed  Google Scholar 

  17. Pappalardi, M. B. et al. Discovery of a first-in-class reversible DNMT1-selective inhibitor with improved tolerability and efficacy in acute myeloid leukemia. Nat. Cancer 2, 1002–1017 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kheradpour, P. et al. Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay. Genome Res. 23, 800–811 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goldberg, A. D., Allis, C. D. & Bernstein, E. Epigenetics: a landscape takes shape. Cell 128, 635–638 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Bernstein, D. L., Le Lay, J. E., Ruano, E. G. & Kaestner, K. H. TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts. J. Clin. Invest. 125, 1998–2006 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cui, C. et al. P16-specific DNA methylation by engineered zinc finger methyltransferase inactivates gene transcription and promotes cancer metastasis. Genome Biol. 16, 252 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li, X. et al. Specific zinc finger-induced methylation of PD-L1 promoter inhibits its expression. FEBS Open Bio 9, 1063–1070 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kameswaran, V. et al. The dysregulation of the DLK1–MEG3 locus in islets from patients with type 2 diabetes is mimicked by targeted epimutation of its promoter with TALE–DNMT constructs. Diabetes 67, 1807–1815 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stolzenburg, S. et al. Stable oncogenic silencing in vivo by programmable and targeted de novo DNA methylation in breast cancer. Oncogene 34, 5427–5435 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maeder, M. L. et al. Targeted DNA demethylation and activation of endogenous genes using programmable TALE–TET1 fusion proteins. Nat. Biotechnol. 31, 1137–1142 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huisman, C. et al. Re-expression of selected epigenetically silenced candidate tumor suppressor genes in cervical cancer by TET2-directed demethylation. Mol. Ther. 24, 536–547 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, H. et al. Induced DNA demethylation by targeting ten–eleven translocation 2 to the human ICAM-1 promoter. Nucleic Acids Res. 42, 1563–1574 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Vojta, A. et al. Repurposing the CRISPR–Cas9 system for targeted DNA methylation. Nucleic Acids Res. 44, 5615–5628 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, X. S. et al. Editing DNA methylation in the mammalian genome. Cell 167, 233–247 e17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pflueger, C. et al. A modular dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9–DNMT3A constructs. Genome Res. 28, 1193–1206 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stepper, P. et al. Efficient targeted DNA methylation with chimeric dCas9–Dnmt3a–Dnmt3L methyltransferase. Nucleic Acids Res. 45, 1703–1713 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Huang, Y. H. et al. DNA epigenome editing using CRISPR–Cas SunTag-directed DNMT3A. Genome Biol. 18, 176 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lei, Y. et al. Targeted DNA methylation in vivo using an engineered dCas9–MQ1 fusion protein. Nat. Commun. 8, 16026 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xiong, T. et al. Targeted DNA methylation in human cells using engineered dCas9-methyltransferases. Sci. Rep. 7, 6732 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tarjan, D. R., Flavahan, W. A. & Bernstein, B. E. Epigenome editing strategies for the functional annotation of CTCF insulators. Nat. Commun. 10, 4258 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mkannez, G. et al. DNA methylation of a PLPP3 MIR transposon-based enhancer promotes an osteogenic programme in calcific aortic valve disease. Cardiovasc. Res. 114, 1525–1535 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu, A. et al. Reprogrammable CRISPR/dCas9-based recruitment of DNMT1 for site-specific DNA demethylation and gene regulation. Cell Discov. 5, 22 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Choudhury, S. R., Cui, Y., Lubecka, K., Stefanska, B. & Irudayaraj, J. CRISPR–dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget 7, 46545–46556 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Morita, S. et al. Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv–TET1 catalytic domain fusions. Nat. Biotechnol. 34, 1060–1065 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Xu, X. et al. A CRISPR-based approach for targeted DNA demethylation. Cell Discov. 2, 16009 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gallego-Bartolome, J. et al. Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proc. Natl Acad. Sci. USA 115, E2125–E2134 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Baumann, V. et al. Targeted removal of epigenetic barriers during transcriptional reprogramming. Nat. Commun. 10, 2119 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Okada, M., Kanamori, M., Someya, K., Nakatsukasa, H. & Yoshimura, A. Stabilization of Foxp3 expression by CRISPR–dCas9-based epigenome editing in mouse primary T cells. Epigenetics Chromatin 10, 24 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Taghbalout, A. et al. Enhanced CRISPR-based DNA demethylation by Casilio-ME-mediated RNA-guided coupling of methylcytosine oxidation and DNA repair pathways. Nat. Commun. 10, 4296 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Galonska, C. et al. Genome-wide tracking of dCas9–methyltransferase footprints. Nat. Commun. 9, 597 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fuks, F., Burgers, W. A., Godin, N., Kasai, M. & Kouzarides, T. Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J. 20, 2536–2544 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hervouet, E., Vallette, F. M. & Cartron, P. F. Dnmt3/transcription factor interactions as crucial players in targeted DNA methylation. Epigenetics 4, 487–499 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Hauri, S. et al. A high-density map for navigating the human polycomb complexome. Cell Rep. 17, 583–595 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Stark, C. et al. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Kress, C., Thomassin, H. & Grange, T. Active cytosine demethylation triggered by a nuclear receptor involves DNA strand breaks. Proc. Natl Acad. Sci. USA 103, 11112–11117 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mahfoudhi, E. et al. TET2-mediated 5-hydroxymethylcytosine induces genetic instability and mutagenesis. DNA Repair 43, 78–88 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Marino, N. D., Pinilla-Redondo, R., Csorgo, B. & Bondy-Denomy, J. Anti-CRISPR protein applications: natural brakes for CRISPR–Cas technologies. Nat. Methods 17, 471–479 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sternberg, N. & Hamilton, D. Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J. Mol. Biol. 150, 467–486 (1981).

    Article  CAS  PubMed  Google Scholar 

  54. Pogribny, I. P., Pogribna, M., Christman, J. K. & James, S. J. Single-site methylation within the p53 promoter region reduces gene expression in a reporter gene construct: possible in vivo relevance during tumorigenesis. Cancer Res. 60, 588–594 (2000).

    CAS  PubMed  Google Scholar 

  55. Yang, L. et al. Methylation of a CGATA element inhibits binding and regulation by GATA-1. Nat. Commun. 11, 2560 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Furst, R. W., Kliem, H., Meyer, H. H. & Ulbrich, S. E. A differentially methylated single CpG-site is correlated with estrogen receptor α transcription. J. Steroid Biochem. Mol. Biol. 130, 96–104 (2012).

    Article  PubMed  Google Scholar 

  57. Nile, C. J., Read, R. C., Akil, M., Duff, G. W. & Wilson, A. G. Methylation status of a single CpG site in the IL6 promoter is related to IL6 messenger RNA levels and rheumatoid arthritis. Arthritis Rheum. 58, 2686–2693 (2008).

    Article  PubMed  Google Scholar 

  58. Bordagaray, M. J. et al. CpG single-site methylation regulates TLR2 expression in proinflammatory PBMCs from apical periodontitis individuals. Front. Immunol. 13, 861665 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Day, J. J. et al. DNA methylation regulates associative reward learning. Nat. Neurosci. 16, 1445–1452 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Patil, V., Ward, R. L. & Hesson, L. B. The evidence for functional non-CpG methylation in mammalian cells. Epigenetics 9, 823–828 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wu, T. P. et al. DNA methylation on N6-adenine in mammalian embryonic stem cells. Nature 532, 329–333 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jang, H. S., Shin, W. J., Lee, J. E. & Do, J. T. CpG and non-CpG methylation in epigenetic gene regulation and brain function. Genes 8, 148 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. de Mendoza, A. et al. The emergence of the brain non-CpG methylation system in vertebrates. Nat. Ecol. Evol. 5, 369–378 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ramsahoye, B. H. et al. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc. Natl Acad. Sci. USA 97, 5237–5242 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gonzalez, F. et al. An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell 15, 215–226 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen, Y. et al. Engineering human stem cell lines with inducible gene knockout using CRISPR/Cas9. Cell Stem Cell 17, 233–244 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Dow, L. E. et al. Inducible in vivo genome editing with CRISPR–Cas9. Nat. Biotechnol. 33, 390–394 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Aubrey, B. J. et al. An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor-promoting mutations in vivo. Cell Rep. 10, 1422–1432 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Cao, J. et al. An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting. Nucleic Acids Res. 44, e149 (2016).

    PubMed  PubMed Central  Google Scholar 

  70. Lundin, A. et al. Development of an ObLiGaRe doxycycline inducible Cas9 system for pre-clinical cancer drug discovery. Nat. Commun. 11, 4903 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sun, N. et al. Development of drug-inducible CRISPR–Cas9 systems for large-scale functional screening. BMC Genomics 20, 225 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. de Solis, C. A., Ho, A., Holehonnur, R. & Ploski, J. E. The development of a viral mediated CRISPR/Cas9 system with doxycycline dependent gRNA expression for inducible in vitro and in vivo genome editing. Front. Mol. Neurosci. 9, 70 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Shamshirgaran, Y. et al. Rapid target validation in a Cas9-inducible hiPSC derived kidney model. Sci. Rep. 11, 16532 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Loew, R., Heinz, N., Hampf, M., Bujard, H. & Gossen, M. Improved Tet-responsive promoters with minimized background expression. BMC Biotechnol. 10, 81 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sakuma, T., Nishikawa, A., Kume, S., Chayama, K. & Yamamoto, T. Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Sci. Rep. 4, 5400 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sakuma, T., Sakamoto, T. & Yamamoto, T. All-in-one CRISPR-Cas9/FokI-dCas9 vector-mediated multiplex genome engineering in cultured cells. Methods Mol. Biol. 1498, 41–56 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Klein, C. B. & Costa, M. DNA methylation, heterochromatin and epigenetic carcinogens. Mutat. Res. 386, 163–180 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Hinz, J. M., Laughery, M. F. & Wyrick, J. J. Nucleosomes inhibit Cas9 endonuclease activity in vitro. Biochemistry 54, 7063–7066 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Isaac, R. S. et al. Nucleosome breathing and remodeling constrain CRISPR–Cas9 function. eLife 5, e13450 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Horlbeck, M. A. et al. Nucleosomes impede Cas9 access to DNA in vivo and in vitro. eLife 5, e12677 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Chen, X. et al. Probing the impact of chromatin conformation on genome editing tools. Nucleic Acids Res. 44, 6482–6492 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Daer, R. M., Cutts, J. P., Brafman, D. A. & Haynes, K. A. The impact of chromatin dynamics on Cas9-mediated genome editing in human cells. ACS Synth. Biol. 6, 428–438 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Jain, S. et al. TALEN outperforms Cas9 in editing heterochromatin target sites. Nat. Commun. 12, 606 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Robertson, K. D. et al. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res. 27, 2291–2298 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chuang, L. S. et al. Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277, 1996–2000 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Byrd, A. K. & Raney, K. D. Protein displacement by an assembly of helicase molecules aligned along single-stranded DNA. Nat. Struct. Mol. Biol. 11, 531–538 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Ikeda, Y., Collins, M. K., Radcliffe, P. A., Mitrophanous, K. A. & Takeuchi, Y. Gene transduction efficiency in cells of different species by HIV and EIAV vectors. Gene Ther. 9, 932–938 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Qin, J. Y. et al. Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS ONE 5, e10611 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Xiang, X. et al. Enhancing CRISPR–Cas9 gRNA efficiency prediction by data integration and deep learning. Nat. Commun. 12, 3238 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Moreno-Mateos, M. A. et al. CRISPRscan: designing highly efficient sgRNAs for CRISPR–Cas9 targeting in vivo. Nat. Methods 12, 982–988 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xu, H. et al. Sequence determinants of improved CRISPR sgRNA design. Genome Res. 25, 1147–1157 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Doench, J. G. et al. Rational design of highly active sgRNAs for CRISPR–Cas9-mediated gene inactivation. Nat. Biotechnol. 32, 1262–1267 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Semenova, E. et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc. Natl Acad. Sci. USA 108, 10098–10103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wu, X. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 32, 670–676 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kurdyukov, S. & Bullock, M. DNA methylation analysis: choosing the right method. Biology 5, 3 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Tost, J. & Gut, I. G. DNA methylation analysis by pyrosequencing. Nat. Protoc. 2, 2265–2275 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Bernstein, D. L., Kameswaran, V., Le Lay, J. E., Sheaffer, K. L. & Kaestner, K. H. The BisPCR(2) method for targeted bisulfite sequencing. Epigenetics Chromatin 8, 27 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Smith, J., Day, R. C. & Weeks, R. J. Next-generation bisulfite sequencing for targeted DNA methylation analysis. Methods Mol. Biol. 2458, 47–62 (2022).

    Article  PubMed  Google Scholar 

  99. Masser, D. R., Stanford, D. R. & Freeman, W. M. Targeted DNA methylation analysis by next-generation sequencing. J. Vis. Exp. 24, 52488 (2015).

    Google Scholar 

  100. Fadrosh, D. W. et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2, 6 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Zhang, Y. et al. DNA methylation analysis by bisulfite conversion, cloning, and sequencing of individual clones. Methods Mol. Biol. 507, 177–187 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D. & Baylin, S. B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl Acad. Sci. USA 93, 9821–9826 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mohn, F., Weber, M., Schubeler, D. & Roloff, T. C. Methylated DNA immunoprecipitation (MeDIP). Methods Mol. Biol. 507, 55–64 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Cross, S. H., Charlton, J. A., Nan, X. & Bird, A. P. Purification of CpG islands using a methylated DNA binding column. Nat. Genet. 6, 236–244 (1994).

    Article  CAS  PubMed  Google Scholar 

  105. Kim, T.H. & Dekker, J. ChIP–quantitative polymerase chain reaction (ChIP–qPCR). Cold Spring Harb. Protoc. 5 (2018).

  106. Gasiunas, G. et al. A catalogue of biochemically diverse CRISPR–Cas9 orthologs. Nat. Commun. 11, 5512 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Kleinstiver, B. P. et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lee, J. K. et al. Directed evolution of CRISPR–Cas9 to increase its specificity. Nat. Commun. 9, 3048 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M. & Joung, J. K. Improving CRISPR–Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279–284 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hiranniramol, K., Chen, Y., Liu, W. & Wang, X. Generalizable sgRNA design for improved CRISPR/Cas9 editing efficiency. Bioinformatics 36, 2684–2689 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Green, R. & Rogers, E. J. Transformation of chemically competent E. coli. Methods Enzymol. 529, 329–336 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Taylor, S., Wakem, M., Dijkman, G., Alsarraj, M. & Nguyen, M. A practical approach to RT–qPCR—publishing data that conform to the MIQE guidelines. Methods 50, S1–S5 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101–1108 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Ben-Hattar, J., Beard, P. & Jiricny, J. Cytosine methylation in CTF and Sp1 recognition sites of an HSV tk promoter: effects on transcription in vivo and on factor binding in vitro. Nucleic Acids Res. 17, 10179–10190 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Medvedeva, Y. A. et al. Effects of cytosine methylation on transcription factor binding sites. BMC Genomics 15, 119 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Canadian Institutes of Health Research for funding this research (PJT-159583) and the McGill University Faculty of Medicine and Health Sciences and its donors for financial support to D.M.S.

Author information

Authors and Affiliations

Authors

Contributions

D.M.S. performed experiments, prepared figures and drafted the manuscript. D.M.S. and M.S. edited the manuscript. M.S. supervised the research.

Corresponding author

Correspondence to Moshe Szyf.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Federica Sarno, Jian-Kang Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Sapozhnikov, D. M. & Szyf, M. Nat. Commun. 12, 5711 (2021): https://doi.org/10.1038/s41467-021-25991-9

Extended data

Extended Data Fig. 1 Modified screenshot of IGV genome browser used for the design and visualization of CpG-targeting gRNAs to be used for CRISPR–dCas9 demethylation.

98 bp region of human hg38 genome build centered on Illumina cg25896754 located at position −9 to −10 relative to the transcription start site of the TP53 gene, which is at position chr17:7,687,550: transcription of TP53 proceeds in the 3′–5′ direction according to this view. Illumina cg25896754 is indicated below the transcript track, and all CpGs are indicated in the track below. The next eight tracks depict the positions of gRNAs designed by the CRISPick software and are listed and numbered by the default rank order of the software (from highest to lowest rank). The bottom two tracks indicate positions of all potential PAMs and thus all potential gRNA positions for S. pyogenes dCas9 in the sense and antisense directions, respectively. The original screenshot has been modified; the majority of text has been replaced with a larger font size so that it may be more discernible.

Extended Data Fig. 2 Example agarose gel depicting diagnostic restriction enzyme digest results following a round of mutagenesis intended to create six new lentiviral gRNA plasmids.

For each of six gRNAs with different sequences, arbitrarily numbered 1 to 6, we picked four bacterial colonies from which plasmid DNA was purified by miniprep followed by restriction digest with EcoRI-HF. Plasmid DNA from minipreps were eluted with 50 µL water. 8.5 µL from each 50 µL sample was incubated with 1 µL CutSmart Buffer and 0.5 µL EcoRI-HF for 30 min at 37 °C. 2 µL 6× DNA loading dye was added to each reaction and loaded onto a 1.5% agarose gel. The marker is GeneRuler 100 bp with ten bands every 100 bp between the sizes of 100 bp and 1,000 bp (inclusive) and with a more prominent 500 bp band. The gel was stained for 15 min with ethidium bromide. The expected band size for correct plasmids is ~470 bp. The agarose gel shows that mutagenesis created major sequence alterations in plasmid structure in 5 of the 24 samples as indicated by the aberrant fragment size after EcoRI-HF cleavage. The remaining 19 produced the expected band (~80% success rate) and were sent for Sanger sequencing. One additional plasmid was later purified for gRNA-5 and sequenced in order to have a minimum of three sequenced plasmids per gRNA. The results of Sanger sequencing are summarized in Supplementary Table 2. Successful mutations were obtained for each of the synthesized gRNAs, and 60% of all Sanger sequences were successfully mutated to the intended gRNA sequence. Ultimately, all gRNAs were successfully made with only four colonies picked per gRNA.

Source data

Supplementary information

Supplementary Information

Supplementary Methods.

Supplementary Table 1

Potential off-target sites of scrambled gRNA sequence in pLenti-gRNA-puro in human and mouse genomes.

Supplementary Table 2

Sanger sequencing results of gRNA plasmid mutagenesis, related to Extended Data Fig. 2.

Supplementary Software 1

Excel template for fold-enrichment and P-value calculations for anti-Flag (dCas9) chromatin immunoprecipitation qPCR.

Source data

Source Data Fig. 5

Uncropped agarose gel image.

Source Data Extended Data Fig. 2

Uncropped agarose gel image.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapozhnikov, D.M., Szyf, M. Enzyme-free targeted DNA demethylation using CRISPR–dCas9-based steric hindrance to identify DNA methylation marks causal to altered gene expression. Nat Protoc 17, 2840–2881 (2022). https://doi.org/10.1038/s41596-022-00741-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00741-3

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing