Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Neuroscience robotics for controlled induction and real-time assessment of hallucinations

Abstract

Although hallucinations are important and frequent symptoms in major psychiatric and neurological diseases, little is known about their brain mechanisms. Hallucinations are unpredictable and private experiences, making their investigation, quantification and assessment highly challenging. A major shortcoming in hallucination research is the absence of methods able to induce specific and short-lasting hallucinations, which resemble clinical hallucinations, can be elicited repeatedly and vary across experimental conditions. By integrating clinical observations and recent advances in cognitive neuroscience with robotics, we have designed a novel device and sensorimotor method able to repeatedly induce a specific, clinically relevant hallucination: presence hallucination. Presence hallucinations are induced by applying specific conflicting (spatiotemporal) sensorimotor stimulation including an upper extremity and the torso of the participant. Another, MRI-compatible, robotic device using similar sensorimotor stimulation permitted the identification of the brain mechanisms of these hallucinations. Enabling the identification of behavioral and a frontotemporal neural biomarkers of hallucinations, under fully controlled experimental conditions and in real-time, this method can be applied in healthy participants as well as patients with schizophrenia, neurodegenerative disease or other hallucinations. The execution of these protocols requires intermediate-level skills in cognitive neuroscience and MRI processing, as well as minimal coding experience to control the robotic device. These protocols take ~3 h to be completed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Robotic setup.
Fig. 2: Behavioral results of the robotic sensorimotor stimulation.
Fig. 3: Brain network of riPH.
Fig. 4: Example of back exploration done for the behavioral experiment.
Fig. 5: The experimental workflow for behavioral experiments is divided into three principal stages.
Fig. 6: Experimental workflow for the fMRI experiment.
Fig. 7: GUI for behavioral experiments.

Similar content being viewed by others

Data availability

MRI data are available on zenodo.org (https://zenodo.org/record/4423384#.YkKyHDWxVmN). Behavioral data can be found on GitLab (https://gitlab.epfl.ch/fbernasc/np-p210507a.git).

Code availability

The codes to control the robots have been uploaded to GitLab (https://gitlab.epfl.ch/fbernasc/roboticsph.git).

References

  1. Tracy, D. K. & Shergill, S. S. Mechanisms underlying auditory hallucinations—understanding perception without stimulus. Brain Sci. 3, 642–669 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Corlett, P. R. et al. Hallucinations and strong priors. Trends Cogn. Sci. 23, 114–127 (2019).

    Article  PubMed  Google Scholar 

  3. Larøi, F. et al. An epidemiological study on the prevalence of hallucinations in a general-population sample: effects of age and sensory modality. Psychiatry Res. 272, 707–714 (2019).

    Article  PubMed  Google Scholar 

  4. Badcock, J. C., Dehon, H. & Larøi, F. Hallucinations in healthy older adults: an overview of the literature and perspectives for future research. Front. Psychol. 8, 1134 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Badcock, J. C. et al. Hallucinations in older adults: a practical review. Schizophr. Bull. 46, 1382–1395 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ohayon, M. M. Prevalence of hallucinations and their pathological associations in the general population. Psychiatry Res. 97, 153–164 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Collerton, D., Perry, E. & McKeith, I. Why people see things that are not there: a novel perception and attention deficit model for recurrent complex visual hallucinations. Behav. Brain Sci. 28, 737–794 (2005).

    Article  PubMed  Google Scholar 

  8. Insel, T. R. Rethinking schizophrenia. Nature 468, 187–193 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Arnaoutoglou, N. A., O’Brien, J. T. & Underwood, B. R. Dementia with Lewy bodies—from scientific knowledge to clinical insights. Nat. Rev. Neurol. 15, 103–112 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Ffytche, D. H. et al. The psychosis spectrum in Parkinson disease. Nat. Rev. Neurol. 13, 81–95 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Millan, M. J. et al. Altering the course of schizophrenia: progress and perspectives. Nat. Rev. Drug Discov. 15, 485–515 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Llorca, P. M. et al. Hallucinations in schizophrenia and Parkinson’s disease: an analysis of sensory modalities involved and the repercussion on patients. Sci. Rep. 6, 38152 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jaspers, K. Über leibhaftige Bewußtheiten (Bewußtheitstäuschungen), ein psychopathologisches Elementarsymptom. Z. Pathopsychol. 2, 150–161 (1913).

    Google Scholar 

  14. McKeith, I. G. et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology 89, 88–100 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Buracchio, T., Arvanitakis, Z. & Gorbien, M. Dementia with Lewy bodies: current concepts. Dement. Geriatr. Cogn. Disord. 20, 306–320 (2005).

    Article  PubMed  Google Scholar 

  16. Walker, Z., Possin, K. L., Boeve, B. F. & Aarsland, D. Lewy body dementias. Lancet 386, 1683–1697 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nagahama, Y. et al. Classification of psychotic symptoms in dementia with Lewy bodies. Am. J. Geriatr. Psychiatry 15, 961–967 (2007).

    Article  PubMed  Google Scholar 

  18. Eversfield, C. L. & Orton, L. D. Auditory and visual hallucination prevalence in Parkinson’s disease and dementia with Lewy bodies: a systematic review and meta-analysis. Psychol. Med. 49, 2342–2353 (2019).

    Article  PubMed  Google Scholar 

  19. Nicastro, N., Eger, A. F., Assal, F. & Garibotto, V. Feeling of presence in dementia with Lewy bodies is related to reduced left frontoparietal metabolism. Brain Imaging Behav. 14, 1199–1207 (2020).

    Article  PubMed  Google Scholar 

  20. Goetz, C. G., Fan, W., Leurgans, S., Bernard, B. & Stebbins, G. T. The malignant course of ‘benign hallucinations’ in Parkinson disease. Arch. Neurol. 63, 713–716 (2006).

    Article  PubMed  Google Scholar 

  21. Fénelon, G., Soulas, T., de Langavant, L. C., Trinkler, I. & Bachoud-Lévi, A.-C. Feeling of presence in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 82, 1219–1224 (2011).

    Article  PubMed  Google Scholar 

  22. Lenka, A., Pagonabarraga, J., Pal, P. K., Bejr-Kasem, H. & Kulisvesky, J. Minor hallucinations in Parkinson disease: a subtle symptom with major clinical implications. Neurology https://doi.org/10.1212/WNL.0000000000007913 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ravina, B. et al. Diagnostic criteria for psychosis in Parkinson’s disease: report of an NINDS, NIMH work group. Mov. Disord. 22, 1061–1068 (2007).

    Article  PubMed  Google Scholar 

  24. Pagonabarraga, J. et al. Neural correlates of minor hallucinations in non-demented patients with Parkinson’s disease. Parkinsonism Relat. Disord. 20, 290–296 (2014).

    Article  PubMed  Google Scholar 

  25. Bejr-Kasem, H. et al. Minor hallucinations reflect early gray matter loss and predict subjective cognitive decline in Parkinson’s disease. Eur. J. Neurol. 28, 438–447 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Rosenthal, R. & Fode, K. L. Psychology of the scientist: V. Three experiments in experimenter bias. Psychol. Rep. 12, 491–511 (1963).

    Article  Google Scholar 

  27. Adler, N. E. Impact of prior sets given experimenters and subjects on the experimenter expectancy effect. Sociometry 36, 113–126 (1973).

    Article  Google Scholar 

  28. Rogers, S., Keogh, R. & Pearson, J. Hallucinations on demand: the utility of experimentally induced phenomena in hallucination research. Philos. Trans. R. Soc. B 376, 20200233 (2021).

    Article  Google Scholar 

  29. Blanke, O. et al. Neurological and robot-controlled induction of an apparition. Curr. Biol. 24, 2681–2686 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Hara, M. et al. A novel manipulation method of human body ownership using an fMRI-compatible master–slave system. J. Neurosci. Methods 235, 25–34 (2014).

    Article  PubMed  Google Scholar 

  31. Bernasconi, F. et al. Robot-induced hallucinations in Parkinson’s disease depend on altered sensorimotor processing in fronto-temporal network. Sci. Transl. Med. 13, eabc8362 (2021).

    Article  PubMed  Google Scholar 

  32. Salomon, R. et al. Sensorimotor induction of auditory misattribution in early psychosis. Schizophr. Bull. https://doi.org/10.1093/schbul/sbz136 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ford, J. M. & Mathalon, D. H. Electrophysiological evidence of corollary discharge dysfunction in schizophrenia during talking and thinking. J. Psychiatr. Res. 38, 37–46 (2004).

    Article  PubMed  Google Scholar 

  34. Heinks-Maldonado, T. H. et al. Relationship of imprecise corollary discharge in schizophrenia to auditory hallucinations. Arch. Gen. Psychiatry 64, 286–296 (2007).

    Article  PubMed  Google Scholar 

  35. Brugger, P., Regard, M. & Landis, T. Unilaterally felt ‘presences’: the neuropsychiatry of one’s invisible doppelganger. Cogn. Behav. Neurol. 9, 114–122, (1996).

  36. Blanke, O., Ortigue, S., Coeytaux, A., Martory, M.-D. & Landis, T. Hearing of a presence. Neurocase 9, 329–339 (2003).

    Article  PubMed  Google Scholar 

  37. Arzy, S., Seeck, M., Ortigue, S., Spinelli, L. & Blanke, O. Induction of an illusory shadow person. Nature 443, 287 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Blakemore, S. J., Wolpert, D. & Frith, C. Why can’t you tickle yourself? Neuroreport 11, R11–R16 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Ehrsson, H. H., Holmes, N. P. & Passingham, R. E. Touching a rubber hand: feeling of body ownership is associated with activity in multisensory brain areas. J. Neurosci. J. Soc. Neurosci. 25, 10564–10573 (2005).

    Article  CAS  Google Scholar 

  40. Ionta, S. et al. Multisensory mechanisms in temporo-parietal cortex support self-location and first-person perspective. Neuron 70, 363–374 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Hara, M. et al. A novel approach to the manipulation of body-parts ownership using a bilateral master-slave system. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems 4664–4669 (IEEE, RSJ, 2011); https://doi.org/10.1109/IROS.2011.6094879

  42. Serino, A. et al. Thought consciousness and source monitoring depend on robotically controlled sensorimotor conflicts and illusory states. iScience 24, 101955 (2021).

    Article  PubMed  Google Scholar 

  43. Weiskrantz, L., Elliott, J. & Darlington, C. Preliminary observations on tickling oneself. Nature 230, 598–599 (1971).

    Article  CAS  PubMed  Google Scholar 

  44. Pozeg, P., Rognini, G., Salomon, R. & Blanke, O. Crossing the hands increases illusory self-touch. PLoS ONE 9, e94008 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Blanke, O., Slater, M. & Serino, A. Behavioral, neural, and computational principles of bodily self-consciousness. Neuron 88, 145–166 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Park, H.-D. & Blanke, O. Coupling inner and outer body for self-consciousness. Trends Cogn. Sci. 23, 377–388 (2019).

    Article  PubMed  Google Scholar 

  47. Kahn, R. S. et al. Schizophrenia. Nat. Rev. Dis. Prim. 1, 1–23 (2015).

    Google Scholar 

  48. Fletcher, P. C. & Frith, C. D. Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. Nat. Rev. Neurosci. 10, 48–58 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Orepic, P., Rognini, G., Kannape, O. A., Faivre, N. & Blanke, O. Sensorimotor conflicts induce somatic passivity and louden quiet voices in healthy listeners. Schizophr. Res. 231, 170–177 (2021).

    Article  PubMed  Google Scholar 

  50. Stripeikyte, G. et al. Fronto-temporal disconnection within the presence hallucination network in psychotic patients with passivity experiences. Schizophr. Bull. 47, 1718–1728 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jones, S. A. V. & O’Brien, J. T. The prevalence and incidence of dementia with Lewy bodies: a systematic review of population and clinical studies. Psychol. Med. 44, 673–683 (2014).

    Article  Google Scholar 

  52. Nicolas Nicastro, Stripeikyte, G., Assal, F., Garibotto, V. & Blanke, O. Premotor and fronto-striatal mechanisms associated with presence hallucinations in dementia with Lewy bodies. Neuroimage Clin. (in the press).

  53. Soulas, T., Cleret de Langavant, L., Monod, V. & Fénelon, G. The prevalence and characteristics of hallucinations, delusions and minor phenomena in a non-demented population sample aged 60 years and over. Int. J. Geriatr. Psychiatry 31, 1322–1328 (2016).

    Article  PubMed  Google Scholar 

  54. O’Callaghan, C. et al. Impaired sensory evidence accumulation and network function in Lewy body dementia. Brain Commun. https://doi.org/10.1093/braincomms/fcab089 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Schumacher, J. et al. Functional connectivity in mild cognitive impairment with Lewy bodies. J. Neurol. https://doi.org/10.1007/s00415-021-10580-z (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Allefeld, C., Pütz, P., Kastner, K. & Wackermann, J. Flicker-light induced visual phenomena: frequency dependence and specificity of whole percepts and percept features. Conscious. Cogn. 20, 1344–1362 (2011).

    Article  PubMed  Google Scholar 

  57. Pearson, J. et al. Sensory dynamics of visual hallucinations in the normal population. eLife 5, e17072 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wackermann, J., Pütz, P. & Allefeld, C. Ganzfeld-induced hallucinatory experience, its phenomenology and cerebral electrophysiology. Cortex 44, 1364–1378 (2008).

    Article  PubMed  Google Scholar 

  59. Mason, O. J. & Brady, F. The psychotomimetic effects of short-term sensory deprivation. J. Nerv. Ment. Dis. 197, 783–785 (2009).

    Article  PubMed  Google Scholar 

  60. Merabet, L. B. et al. Visual hallucinations during prolonged blindfolding in sighted subjects. J. Neuro-Ophthalmol. 24, 109–113 (2004).

    Article  Google Scholar 

  61. Zarkali, A., Lees, A. J. & Weil, R. S. Flickering stimuli do not reliably induce visual hallucinations in Parkinson’s disease. J. Park. Dis. 9, 631–635 (2019).

    Google Scholar 

  62. Ellson, D. G. Hallucinations produced by sensory conditioning. J. Exp. Psychol. 28, 1–20 (1941).

    Article  Google Scholar 

  63. Powers, A. R., Mathys, C. & Corlett, P. R. Pavlovian conditioning–induced hallucinations result from overweighting of perceptual priors. Science 357, 596–600 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vollenweider, F. X. & Preller, K. H. Psychedelic drugs: neurobiology and potential for treatment of psychiatric disorders. Nat. Rev. Neurosci. 21, 611–624 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Carhart-Harris, R. L. How do psychedelics work? Curr. Opin. Psychiatry 32, 16–21 (2019).

    Article  PubMed  Google Scholar 

  66. Parvizi, J. et al. Altered sense of self during seizures in the posteromedial cortex. Proc. Natl Acad. Sci. USA 118, e2100522118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Penfield, W. & Perot, P. The brain’s record of auditory and visual experience. A final summary and discussion. Brain 86, 595–696 (1963).

    Article  CAS  PubMed  Google Scholar 

  68. Heydrich, L., Lopez, C., Seeck, M. & Blanke, O. Partial and full own-body illusions of epileptic origin in a child with right temporoparietal epilepsy. Epilepsy Behav. 20, 583–586 (2011).

    Article  PubMed  Google Scholar 

  69. Blanke, O., Perrig, S., Thut, G., Landis, T. & Seeck, M. Simple and complex vestibular responses induced by electrical cortical stimulation of the parietal cortex in humans. J. Neurol. Neurosurg. Psychiatry 69, 553–556 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Penfield, W. & Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60, 389–443 (1937).

    Article  Google Scholar 

  71. Frith, C. D. & Done, D. J. Experiences of alien control in schizophrenia reflect a disorder in the central monitoring of action. Psychol. Med. 19, 359–363 (1989).

    Article  CAS  PubMed  Google Scholar 

  72. Tsakiris, M., Hesse, M. D., Boy, C., Haggard, P. & Fink, G. R. Neural signatures of body ownership: a sensory network for bodily self-consciousness. Cereb. Cortex 17, 2235–2244 (2007).

    Article  PubMed  Google Scholar 

  73. Ehrsson, H. H., Spence, C. & Passingham, R. E. That’s my hand! Activity in premotor cortex reflects feeling of ownership of a limb. Science 305, 875–877 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Lenggenhager, B., Tadi, T., Metzinger, T. & Blanke, O. Video ergo sum: manipulating bodily self-consciousness. Science 317, 1096–1099 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Farrer, C., Valentin, G. & Hupé, J. M. The time windows of the sense of agency. Conscious. Cogn. 22, 1431–1441 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Blakemore, S.-J., Wolpert, D. M. & Frith, C. D. Central cancellation of self-produced tickle sensation. Nat. Neurosci. 1, 635–640 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Oldfield, R. C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9, 97–113 (1971).

    Article  CAS  PubMed  Google Scholar 

  78. Gorgolewski, K. J. et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci. Data 3, 160044 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–2154 (2012).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by two generous donors advised by CARIGEST SA (Fondazione Teofilo Rossi di Montelera e di Premuda and a second one wishing to remain anonymous) to O.B., Parkinson Suisse to O.B, Bertarelli Novartis Foundation for Medical-Biological Research Foundation to O.B., Empiris Foundation to O.B., Swiss National Science Foundation to O.B. Grant-in-Aid for Scientific Research (B) (19H04187) of the Japan Society for the Promotion of Science to M.H. Grant-in-Aid for Scientific Research (A) (22H00526) of the Japan Society for the Promotion of Science to M.H. E.B. is supported by The National Center of Competence in Research (NCCR) ‘Synapsy—The Synaptic Bases of Mental Diseases’ (# 51AU40–125759) to O.B. We thank P. Pozeg, A. Serino, S. Giedre, R. Salomon and P. Progin for their contribution to the development of the different experimental paradigms. The authors thank the MRI Facility, Human Neuroscience Platform, Fondation Campus Biotech Geneva for providing the MRI check-list questionnaire.

Author information

Authors and Affiliations

Authors

Contributions

The study and the protocol were designed by F.B., E.B., G.R. and O.B. The robotic system and codes for controlling it were designed by M.H and J.L. H.D. developed the code for the GUI allowing to adapt the behavior of the robots depending on the experimental conditions. J.P. adapted the questionnaire for the assessment of the illusions induced by the robotic device. The manuscript was written by F.B., E.B. and O.B. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Olaf Blanke.

Ethics declarations

Competing interests

O.B., G.R. and M.H. are inventors on patent US 10,286,555 B2 held by the Swiss Federal Institute (EPFL) that covers the robot-controlled induction of the feeling of a presence (presence hallucination). O.B. and G.R. are inventors on patent US 10,349,899 B2 held by the Swiss Federal Institute (EPFL) that covers a robotic system for the prediction of hallucinations for diagnostic and therapeutic purposes. O.B. and G.R. are co-founders and shareholders of Metaphysiks Engineering SA, a company that develops immersive technologies, including applications of the robotic induction of presence hallucinations that are not related to the diagnosis, prognosis or treatment of Parkinson’s disease. O.B. is a member of the board and shareholder of Mindmaze SA.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Blanke, O. et al. Curr. Biol. 24, 2681–2686 (2014): https://doi.org/10.1016/j.cub.2014.09.049

Serino, A. et al. iScience 24, 101955 (2021): https://doi.org/10.1016/j.isci.2020.101955

Bernasconi, F. et al. Sci. Transl. Med. 13, (2021): https://doi.org/10.1126/scitranslmed.abc8362

Stripeikyte, G. et al. Schizophr. Bull. (2021): https://doi.org/10.1093/schbul/sbab031

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2 and Figs. 1–3.

Reporting Summary

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernasconi, F., Blondiaux, E., Rognini, G. et al. Neuroscience robotics for controlled induction and real-time assessment of hallucinations. Nat Protoc 17, 2966–2989 (2022). https://doi.org/10.1038/s41596-022-00737-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00737-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing